Sansone / Conti / Sneddon | Non-Linear Differential Equations | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band Volume 67, 550 Seiten, Web PDF

Reihe: International Series in Pure and Applied Mathematics

Sansone / Conti / Sneddon Non-Linear Differential Equations


1. Auflage 2014
ISBN: 978-1-4831-8505-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band Volume 67, 550 Seiten, Web PDF

Reihe: International Series in Pure and Applied Mathematics

ISBN: 978-1-4831-8505-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Non-Linear Differential Equations covers the general theorems, principles, solutions, and applications of non-linear differential equations. This book is divided into nine chapters. The first chapters contain detailed analysis of the phase portrait of two-dimensional autonomous systems. The succeeding chapters deal with the qualitative methods for the discovery of periodic solutions in periodic systems. The remaining chapters describe a synthetical approach to the study of asymptotic properties, especially stability properties, of the solutions of general n-dimensional systems. This book will be of great value to mathematicians, researchers, and students.

Sansone / Conti / Sneddon Non-Linear Differential Equations jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Non-Linear Differential Equations;4
3;Copyright Page;5
4;Table of Contents;6
5;PREFACE;14
6;CHAPTER I. GENERAL THEOREMS ABOUT SOLUTIONS OF DIFFERENTIAL SYSTEMS;16
6.1;§ 1. Integral Curves;16
6.2;§ 2. Lipschitzian and Carathéodory Systems;26
6.3;§ 3. The Solution f(t, t0, x0) of the System (1.1.1);31
6.4;§ 4. Periodic Solutions;40
6.5;§ 5. Autonomous Systems;43
6.6;COMPLEMENTS;47
6.7;BIBLIOGRAPHY;49
7;CHAPTER II. PARTICULAR PLANE AUTONOMOUS SYSTEMS;52
7.1;§ 1. The Linear Case;52
7.2;§ 2. Homogeneous Systems;64
7.3;§ 3. The Analytic Case;81
7.4;§ 4. The Problem of the Center;99
7.5;§ 5. Singular Points at Infinity;113
7.6;COMPLEMENTS;122
7.7;BIBLIOGRAPHY;125
8;CHAPTER III. THE SINGULARITIES OF BRIOT–BOUQUET;126
8.1;§ 1. Theorem of Briot—Bouquet for the Analytic Case;126
8.2;§ 2. Reduction of Differential Equations With an Isolated Singular Point to a Typical Form in the Analytic Case. The Theorem of I. Bendixson on the Behavior of the Trajectories of the Reduced Equations of the Second Type;133
8.3;§ 3. Equation of Briot—Bouquet in the Nodal Case in the Real Domain. Theorems of A. Wintner;142
8.4;COMPLEMENTS;149
8.5;BIBLIOGRAPHY;154
9;CHAPTER IV. PLANE AUTONOMOUS SYSTEMS;156
9.1;§ 1. Limiting Sets;156
9.2;§ 2. Plane Cycles;174
9.3;§ 3. Isolated Singular Points;193
9.4;§ 4. The Index;203
9.5;§ 5. The Cylinder as Phase Space;212
9.6;§ 6. The Torus as Phase Space;215
9.7;§ 7. A Short Account on Dynamical;219
9.8;BIBLIOGRAPHY;221
10;CHAPTER V. AUTONOMOUS PLANE SYSTEMS WITH PERTURBATIONS;225
10.1;§ 1. Homogeneous Perturbed Systems;225
10.2;§ 2. Isolated Singular Points of System of Class C1. Elementary Points;241
10.3;§ 3. An Asymptotic Study of a Node with two Tangents and a Saddle Point, of H. Weyl;250
10.4;§ 4. Isolated Singular Points of Systems of Class C1. Non-Elementary Points;271
10.5;§ 5. Structurally Stable Systems. Systems With a Parameter;284
10.6;BIBLIOGRAPHY;289
11;CHAPTER VI. ON SOME AUTONOMOUS SYSTEMS WITH ONE DEGREE OF FREEDOM;292
11.1;§ 1. Trajectories of the Equation of Linear Motion of a Point Under Viscous Resistance;292
11.2;§ 2. The Equation;293
11.3;§ 3. Equations of van der Pol and Liénard of the Oscillations of Relaxation;318
11.4;§ 4. Periodic Solutions of the Generalized Equation of Liénard;336
11.5;§ 5. Periodic Solutions of the Equation x + f(x) x + g(x) = 0 without the Hypothesis x g(x) > 0 for | x | > 0;349
11.6;§ 6. The Equation of Damped Vibrations: Ax+f(x)x+Cx = 0;356
11.7;§ 7. On an Equation of Dynamics and Aerodynamics of Wires;359
11.8;COMPLEMENTS;365
11.9;BIBLIOGRAPHY;368
12;CHAPTER VII. NON-AUTONOMOUS SYSTEMS WITH ONE DEGREE OF FREEDOM;374
12.1;§ 1. The Problem of Forced Oscillations. Linear Case;374
12.2;§ 2. The Fixed Point Theorem of L. E. J. Brouwer and the Theorems of M. L. Cartwright, J· E. Littlewood and J. L. Massera;378
12.3;§ 3. Theorems of T. Yoshizawa;386
12.4;§ 4. Harmonic Solutions out of Phase of the Equation x = F(x, cos . t). Theorem of F. John;404
12.5;§ 5. The Equation x + f(x) x + g(x) = p(t);414
12.6;§ 6. The Equation x + F(x) + x = p(t);423
12.7;§ 7. Theorems of G. E. H. Reuter on the Equations;428
12.8;§ 8. The Equation x + f(x, x) x + g(x) = p(t);433
12.9;§ 9. Non-Linear Systems with Subharmonic Solutions;438
12.10;§ 10. General Remarks Concerning Periodic Solutions;443
12.11;COMPLEMENTS;444
12.12;BIBLIOGRAPHY;450
13;CHAPTER VIII. LINEAR SYSTEMS;456
13.1;§ 1. The Adjoint System. The Inequalities of T. Wazewski;456
13.2;§ 2. Linear Autonomous Systems with Constant Coefficients;459
13.3;§ 3. Linear Periodic Systems;466
13.4;§ 4. Reducible Systems;470
13.5;§ 5. Type Numbers of a Function. Relation of t- Similitude;472
13.6;§ 6. Regular Systems;477
13.7;§ 7. Periodic Solutions;481
13.8;COMPLEMENTS;487
13.9;BIBLIOGRAPHY;487
14;CHAPTER IX. STABILITY;491
14.1;§ 1. The method of V functions;491
14.2;§ 2. Stability of Linear Systems;503
14.3;§ 3. Stability in the First Approximation;517
14.4;§ 4. Asymptotic Equivalence;529
14.5;COMPLEMENTS AND PROBLEMS;535
14.6;BIBLIOGRAPHY;538
15;INDEX;546
16;OTHER TITLES IN THE SERIES IN PURE AND APPLIED MATHEMATICS;550



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.