E-Book, Englisch, Band 41, 320 Seiten, eBook
Reihe: Studies in Big Data
Sayed-Mouchaweh Learning from Data Streams in Evolving Environments
1. Auflage 2018
ISBN: 978-3-319-89803-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Methods and Applications
E-Book, Englisch, Band 41, 320 Seiten, eBook
Reihe: Studies in Big Data
ISBN: 978-3-319-89803-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Chapter1: Transfer Learning in Non-Stationary Environments.- Chapter2: A new combination of diversity techniques in ensemble classifiers for handling complex concept drift.- Chapter3: Analyzing and Clustering Pareto-Optimal Objects in Data Streams.- Chapter4: Error-bounded Approximation of Data Stream: Methods and Theories.- Chapter5: Ensemble Dynamics in Non-stationary Data Stream Classification.- Chapter6: Processing Evolving Social Networks for Change Detection based on Centrality Measures.- Chapter7: Large-scale Learning from Data Streams with Apache SAMOA.- Chapter8: Process Mining for Analyzing Customer Relationship Management Systems A Case Study.- Chapter9: Detecting Smooth Cluster Changes in Evolving Graph Sequences.- Chapter10: Efficient Estimation of Dynamic Density Functions with Applications in Data Streams.- Chapter11: A Survey of Methods of Incremental Support Vector Machine Learning.- Chapter12: On Social Network-based Algorithms for Data Stream Clustering.