Buch, Englisch, 444 Seiten, Format (B × H): 141 mm x 228 mm, Gewicht: 608 g
Reihe: Chapman & Hall/CRC Monographs on Statistics and Applied Probability
Buch, Englisch, 444 Seiten, Format (B × H): 141 mm x 228 mm, Gewicht: 608 g
Reihe: Chapman & Hall/CRC Monographs on Statistics and Applied Probability
ISBN: 978-0-412-04061-0
Verlag: Taylor & Francis Ltd
The last two decades have seen enormous developments in statistical methods for incomplete data. The EM algorithm and its extensions, multiple imputation, and Markov Chain Monte Carlo provide a set of flexible and reliable tools from inference in large classes of missing-data problems. Yet, in practical terms, those developments have had surprisingly little impact on the way most data analysts handle missing values on a routine basis.
Analysis of Incomplete Multivariate Data helps bridge the gap between theory and practice, making these missing-data tools accessible to a broad audience. It presents a unified, Bayesian approach to the analysis of incomplete multivariate data, covering datasets in which the variables are continuous, categorical, or both. The focus is applied, where necessary, to help readers thoroughly understand the statistical properties of those methods, and the behavior of the accompanying algorithms.
All techniques are illustrated with real data examples, with extended discussion and practical advice. All of the algorithms described in this book have been implemented by the author for general use in the statistical languages S and S Plus. The software is available free of charge on the Internet.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
Weitere Infos & Material
Introduction Assumptions EM and Inference by Data Augmentation Methods for Normal Data More on the Normal Model Methods for Categorical Data Loglinear Models Methods for Mixed Data Further Topics Appendices References Index