Seidel / Corneil / Mathon | Geometry and Combinatorics | E-Book | www.sack.de
E-Book

E-Book, Englisch, 430 Seiten, Web PDF

Seidel / Corneil / Mathon Geometry and Combinatorics


1. Auflage 2014
ISBN: 978-1-4832-6800-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 430 Seiten, Web PDF

ISBN: 978-1-4832-6800-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Geometry and Combinatorics: Selected Works of J. J. Seidel brings together some of the works of J. J. Seidel in geometry and combinatorics. Seidel's selected papers are divided into four areas: graphs and designs; lines with few angles; matrices and forms; and non-Euclidean geometry. A list of all of Seidel's publications is included. Comprised of 29 chapters, this book begins with a discussion on equilateral point sets in elliptic geometry, followed by an analysis of strongly regular graphs of L2-type and of triangular type. The reader is then introduced to strongly regular graphs with (-1, 1, 0) adjacency matrix having eigenvalue 3; graphs related to exceptional root systems; and equiangular lines. Subsequent chapters deal with the regular two-graph on 276 vertices; the congruence order of the elliptic plane; equi-isoclinic subspaces of Euclidean spaces; and Wielandt's visibility theorem. This monograph will be of interest to students and practitioners in the field of mathematics.

Seidel / Corneil / Mathon Geometry and Combinatorics jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Geometry and Combinatorics: Selected Works of J. J. Seidel;4
3;Copyright Page;5
4;Table of Contents;6
5;Preface;10
6;Acknowledgments;12
7;List of Publications of J. J. Seidel;14
8;Part I: Graphs and Designs;22
8.1;Chapter 1. EQUILATERAL POINT SETS IN ELLIPTIC GEOMETRY;24
8.1.1;1. Introduction on geometry;24
8.1.2;2. Introduction on matrices;25
8.1.3;3. Re-wording of the problem;26
8.1.4;4. Tables;27
8.1.5;5. C-matrices;30
8.1.6;6. Results on n(r);31
8.1.7;7. Equilateral point sets in Er-1;34
8.1.8;REFERENCES;36
8.2;Chapter 2. STRONGLY REGULAR GRAPHS OF L2-TYPE AND OF TRIANGULAR TYPE;38
8.2.1;1. INTRODUCTION;38
8.2.2;2. DEFINITIONS;39
8.2.3;3. EIGENVALUES;40
8.2.4;4. GRAPHS WITH TWO EIGENVALUES, Q1 = 28 + 1, Q2 = – 3;42
8.2.5;REFERENCES;45
8.3;Chapter 3. Strongly Regular Graphs with (—1,1,0) Adjacency Matrix Having Eigenvalue 3;47
8.3.1;1. INTRODUCTION;47
8.3.2;2. STRONG GRAPHS;48
8.3.3;3. CLASSIFICATION AND EXAMPLES;51
8.3.4;4. COMPLETE BIPARTITE INDUCED SUBGRAPHS;53
8.3.5;5. THE STANDARD ADJACENCY MATRIX FOR .1 = 3, .0 . 3;56
8.3.6;6. STRONGLY REGULAR GRAPHS WITH .1 = 3;59
8.3.7;REFERENCES;63
8.4;Chapter 4. STRONGLY REGULAR GRAPHS DERIVED FROM COMBINATORIAL DESIGNS;65
8.4.1;1. Introduction;65
8.4.2;2. A construction method for graphs;66
8.4.3;3. Quasi-symmetric block designs;70
8.4.4;4. Symmetric Hadamard matrices with constant diagonal;72
8.4.5;5. Tactical configurations;78
8.4.6;6. The extended Golay code;80
8.4.7;REFERENCES;82
8.5;Chapter 5. A Strongly Regular Graph Derived from the Perfect Ternary Golay Code;83
8.5.1;1. Introduction;83
8.5.2;2. Strongly regular graphs with P211—P111 = 1;84
8.5.3;3. The perfect ternary Golay code;86
8.5.4;4. Constitution of the 243-graph;87
8.5.5;References;88
8.6;Chapter 6. SPHERICAL CODES AND DESIGNS;89
8.6.1;1. INTRODUCTION;89
8.6.2;2. GEGENBAUER POLYNOMIALS;90
8.6.3;3. HARMONIC POLYNOMIALS;92
8.6.4;4. SPHERICAL CODES;94
8.6.5;5. SPHERICAL DESIGNS;97
8.6.6;6. SPHERICAL (d, n, s, t)- CONFIGURATIONS;102
8.6.7;7. DISTANCE INVARIANCE AND ASSOCIATION SCHEMES;104
8.6.8;8. EXAMPLES FROM SETS OF LINES AND DERIVED CONFIGURATIONS;106
8.6.9;9. EXAMPLES FROM ASSOCIATION SCHEMES;111
8.6.10;BIBLIOGRAPHY;113
8.7;Chapter 7. GRAPHS RELATED TO EXCEPTIONAL ROOT SYSTEMS;115
8.7.1;ANNOUNCEMENT OF RESULTS;115
8.7.2;REFERENCES;120
8.8;Chapter 8. Strongly Regular Graphs Having Strongly Regular Subconstituents;122
8.8.1;1. INTRODUCTION;122
8.8.2;2. STRONGLY REGULAR GRAPHS;123
8.8.3;3. KREIN PARAMETERS AND TENSORS;126
8.8.4;4. SPHERICAL DESIGNS;128
8.8.5;5. THE SUBCONSTITUENTS;130
8.8.6;6. SMITH GRAPHS;131
8.8.7;7. PSEUDO-GEOMETRIC GRAPHS;137
8.8.8;8. GENERALIZED QUADRANGLES WITH PARAMETERS (q, q2);139
8.8.9;9. UNIQUENESS PROOFS;142
8.8.10;REFERENCES;144
9;Part II: Lines with Few Angles;146
9.1;Chapter 9. Equiangular Lines;148
9.1.1;1. INTRODUCTION;148
9.1.2;2. DEFINITIONS AND EXAMPLES;149
9.1.3;3. BOUNDS FOR .(r);151
9.1.4;4. PILLARS;155
9.1.5;5. DETERMINATION OF .1/5(r);160
9.1.6;REFERENCES;166
9.2;Chapter 10. A SURVEY OF TWO–GRAPHS;167
9.2.1;1. INTRODUCTION;167
9.2.2;2. INTRODUCTORY EXAMPLES;168
9.2.3;3. SWITCHING OF GRAPHS;170
9.2.4;4. TWO-GRAPHS;171
9.2.5;5. EQUIANGULAR LINES;174
9.2.6;6. STRONG GRAPHS;175
9.2.7;7. REGULAR TWO-GRAPHS;177
9.2.8;8. RANK 3 GRAPHS;181
9.2.9;9. SYMPLECTIC AND ORTHOGONAL TWO-GRAPHS;184
9.2.10;10. UNITARY TWO-GRAPHS;186
9.2.11;11. SPORADIC TWO-GRAPHS;187
9.2.12;12. HADAMARD MATRICES;189
9.2.13;13. CONFERENCE MATRICES;191
9.2.14;REFERENCES;196
9.3;Chapter 11. THE REGULAR TWO-GRAPH ON 276 VERTICES;198
9.3.1;1. Introduction;198
9.3.2;2. Regular two-graphs;199
9.3.3;3. The case n = 276;203
9.3.4;4. Ternary codes;205
9.3.5;5. The 276-two-graph;207
9.3.6;References;212
9.4;Chapter 12. BOUNDS FOR SYSTEMS OF LINES AND JACOBI POLYNOMIALS;214
9.4.1;Abstract;214
9.4.2;1. Introduction;214
9.4.3;2. Jacobi polynomials;215
9.4.4;3. Addition formulae;217
9.4.5;4. Characteristic matrices;218
9.4.6;5. Special bounds for A-sets;221
9.4.7;6. Absolute bounds for A-sets;223
9.4.8;7. Properties of extremal A-sets;226
9.4.9;REFERENCES;228
9.5;Chapter 13. Line Graphs, Root Systems, and Elliptic Geometry;229
9.5.1;1. INTRODUCTION;229
9.5.2;2. LINES AT 60° AND 90°;230
9.5.3;3. ROOT SYSTEMS;234
9.5.4;4. GRAPHS WITH LEAST EIGENVALUES —2;239
9.5.5;5. SPECTRAL CHARACTERIZATION OF CERTAIN GRAPHS;245
9.5.6;6. AN APPLICATION TO HADAMARD MATRICES;249
9.5.7;REFERENCES;251
9.6;Chapter 14. TWO-GRAPHS, A SECOND SURVEY;252
9.6.1;1. INTRODUCTION;252
9.6.2;2. DEFINITION AND ENUMERATION;253
9.6.3;3. EQUIANGULAR LINES;256
9.6.4;4. AUTOMORPHISMS;258
9.6.5;5. ENUMERATION OF REGULAR TWO-GRAPHS;265
9.6.6;6. CONFERENCE TWO-GRAPHS OF ORDER pq2 + 1;267
9.6.7;7. MÖBIUS AND MINKOWSKI TWO-GRAPHS;271
9.6.8;REFERENCES;274
10;Part III: Matrices and Forms;276
10.1;Chapter 15. ORTHOGONAL MATRICES WITH ZERO DIAGONAL;278
10.1.1;1. Introduction;278
10.1.2;2. Paley matrices;279
10.1.3;3. Symmetric C-matrices;281
10.1.4;4. C-matrices and Hadamard matrices;284
10.1.5;REFERENCES;286
10.2;Chapter 16. QUASIREGULAR TWO-DISTANCE SETS;288
10.2.1;1. Introduction;288
10.2.2;2. Two-distance sets in Rn;288
10.2.3;3. The case of even dimensions;291
10.2.4;4. The case of odd dimensions;291
10.2.5;REFERENCES;294
10.3;Chapter 17. A SKEW HADAMARD MATRIX OF ORDER 36;295
10.3.1;References;296
10.4;Chapter 18. SYMMETRIC HADAMARD MATRICES OF ORDER 36;297
10.4.1;1. Introduction;297
10.4.2;2. Latin square graphs and Steiner graphs;298
10.4.3;3. Equivalence under switching;299
10.4.4;4. Regular Steiner graphs;301
10.4.5;5. The lines of PG(3,2);304
10.4.6;6. Rank 3 graphs of order 36;308
10.4.7;Referencs;309
10.5;Chapter 19. QUADRATIC FORMS OVER GF(2);311
10.5.1;§ 1. Introduction;311
10.5.2;§ 2. Quadratic and bilinear forms;311
10.5.3;§ 3. The rational vectors and their Gramian matrix;313
10.5.4;§ 4. Configurations, designs, and codes;315
10.5.5;REFERENCES;318
10.6;Chapter 20. On two-graphs, and Shult's characterization of symplectic and orthogonal geometries over GF(2);319
10.6.1;1. Introduction;319
10.6.2;2. Regular two-graphs;320
10.6.3;3. Symplectic and orthogonal geometries over GF(2);324
10.6.4;4. Characterization of the symplectic and orthogonal graphs;330
10.6.5;5. A problem by Hamelink;340
10.6.6;References;343
10.7;Chapter 21. The Krein condition, spherical designs, Norton algebras and permutation groups;344
10.7.1;1. INTRODUCTION;344
10.7.2;2. THE KREIN PARAMETERS;345
10.7.3;3. IMPRIMITIVE ASSOCIATION SCHEMES;346
10.7.4;4. SPHERICAL DESIGNS;347
10.7.5;5. NORTON ALGEBRAS;349
10.7.6;6. PERMUTATION GROUPS;350
10.7.7;7. A FINAL REMARK;353
10.7.8;REFERENCES;353
11;Part IV: Non-Euclidean Geometry;356
11.1;Chapter 22. The congruence order of the elliptic plane;358
11.2;Chapter 23. EQUI-ISOCLINIC SUBSPACES OF EUCLIDEAN SPACES;362
11.2.1;1. Introduction;362
11.2.2;2. Two n-subspaces;363
11.2.3;3. Equi-isoclinic subspaces;365
11.2.4;4. Block matrices;367
11.2.5;5. Determination of ..(n, 2n);369
11.2.6;REFERENCES;371
11.3;Chapter 24. METRIC PROBLEMS IN ELLIPTIC GEOMETRY;372
11.3.1;1. Introduction;372
11.3.2;2. Congruence Order;373
11.3.3;3. Elliptic Space En-1;373
11.3.4;4. Pillars;374
11.3.5;5. Further Results;378
11.3.6;6. Finite Groups, Error-Correcting Codes, and Two-Graphs;380
11.3.7;REFERENCES;383
11.4;Chapter 25. THE FOOTBALL;384
11.4.1;2. THE ICOSAHEDRON;384
11.4.2;3. ORBITS;385
11.4.3;4. APPROXIMATION OF STRENGTH t;387
11.4.4;5. INVARIANTS;388
11.4.5;6. THE DIHEDRAL GROUP OF ORDER 10;389
11.4.6;7. THE ICOSAHEDRAL GROUP;390
11.4.7;REFERENCES;391
11.5;Chapter 26. DISCRETE HYPERBOLIC GEOMETRY;393
11.5.1;1. Introduction;393
11.5.2;2. Lorentz space;395
11.5.3;3. Lifting;396
11.5.4;4. Graphs with .2 = 1;398
11.5.5;5. Reflexive graphs;400
11.5.6;6. Unimodular Euclidean lattices;404
11.5.7;7. Unimodular lattices of signature (p, 1);407
11.5.8;References;410
11.6;Chapter 27. FEW - DISTANCE SETS IN Rp, q;412
11.6.1;1. Introduction;412
11.6.2;2. The generalized addition formula;413
11.6.3;3. Bounds for s-distance sets;416
11.6.4;4. Equiangular lines in Rp,1;418
11.6.5;5. Two-distance sets;420
11.6.6;6. Two-angle sets of lines;421
11.6.7;7. Final remarks;423
11.6.8;REFERENCES;424
11.7;Chapter 28. Remark on Wielandt's Visibility Theorem;426
11.7.1;ABSTRACT;426
11.7.2;1. INTRODUCTION;426
11.7.3;2. THE THEOREM;426
11.7.4;3. THE PROOF;427
11.7.5;REFERENCES;427
11.8;Chapter 29. Complete List of Permissions;428
11.8.1;I. GRAPHS AND DESIGNS;428
11.8.2;II. LINES WITH FEW ANGLES;429
11.8.3;III. MATRICES AND FORMS;429
11.8.4;IV. NON-EUCLIDEAN GEOMETRY;430



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.