Shao / Cao | Data Information in Online Environments | Buch | 978-3-031-80712-1 | sack.de

Buch, Englisch, Band 515, 292 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 470 g

Reihe: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

Shao / Cao

Data Information in Online Environments

4th EAI International Conference, DIONE 2023, Nanchang, China, November 25-27, 2023, Proceedings
Erscheinungsjahr 2025
ISBN: 978-3-031-80712-1
Verlag: Springer Nature Switzerland

4th EAI International Conference, DIONE 2023, Nanchang, China, November 25-27, 2023, Proceedings

Buch, Englisch, Band 515, 292 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 470 g

Reihe: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

ISBN: 978-3-031-80712-1
Verlag: Springer Nature Switzerland


This book constitutes the refereed proceedings of the 4th EAI International Conference on Data Information in Online Environments, DIONE 2023, held in Nanchang, China, during November 25-27, 2023.

The 21 full papers  were carefully reviewed and selected from 81 submissions.The papers are grouped in thematic sessions as follows: the application of artificial intelligence: the new era of computer network by using machine learning, a caching strategy using deep q-learning for multi-access edge computing users, a deep reinforcement learning-based content updating algorithm for high definition map edge caching, advanced technology in computing, emerging technologies and applications in networks and management.

Shao / Cao Data Information in Online Environments jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


.- The application of artificial intelligence: The New Era of Computer Network by using Machine Learning .
.-A QoS and Load Balancing Predictive Model Based on LSTM and Random Forest Regression in SDN: A Rest API approach.
.- A recommendation algorithm for improved residual networks based on matrix decomposition.
.- Deep Image Inpainting Incorporating Texture Prior based on Gabor Filter.
.- The Improved XdeepFM Algorithm Based on Attention Mechanism and Factorization Machine.
.- A Caching Strategy Using Deep Q-Learning for Multi-access Edge Computing Users.
.-Deep Learning-Based Glaucoma Diagnostic Assistance System on Mobile Devices.
.- Using alignment chain to boost genetic sequence alignment process.
.- Analysis of the Industrial Internet Industry Chain and Supply Capability Analysis of Key Links within Jiangxi Province.
.- A Deep Reinforcement Learning-Based Content Updating Algorithm for High Definition Map Edge Caching.
.- A Lithium-ion Battery Cathode Material Literature Entity Recognition Method Based on Deep Learning.
.- Design and implementation of improved multi-objective genetic algorithm based on uniform distribution.
.- Advanced technology in computing.
.-Wavelet and Kalman Filter-empowered Traffic Detection for Secure QUIC Network Communication.
.- HyFed A Hybrid Blockchain Empowered Federated Learning Privacy Fair Framework .
.- Research on the capability status of industrial Internet security supervision platform.
.- Solar system dynamics with Jet Propulsion Laboratory Ephemeris.
.- Emerging technologies and applications in networks and management .
.-Elderly Health Care Data Integration Framework: Design and Implementation.
.- Challenges and Prospects of Power Network Security Protection in the Context of a New Power System: A Case Study of Jiangx.
.- Enhancing Sequence Alignment Efficiency through Concurrent Utilization of Multiple Arm Processors in a Sequential Processing Framework.
.- Fusion of multiscale convolution and LSTM for stock price prediction.
.- Development of a web application for the sociocultural diffusion of the municipality of Lamas, Peru.
.- A Solution Against Selective Jamming Attack in IEEE 802.15.4e Wireless Networks.
.- TDFM and TAFM: Time-aware and feature fusion-based deep recommendation models for short videos.
.- Blockchain Based Access Control: A review and future perspectives.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.