E-Book, Englisch, 81 Seiten
Sharma Vibration Analysis of Functionally Graded Piezoelectric Actuators
1. Auflage 2019
ISBN: 978-981-13-3717-8
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 81 Seiten
Reihe: SpringerBriefs in Computational Mechanics
ISBN: 978-981-13-3717-8
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents a detailed study on the vibration analysis of functionally graded piezoelectric actuators excited under the shear effect. Two types of actuator geometries viz. beam and annular plate are considered, where the material properties are assumed to have a continuous variation in accordance with a power law distribution. The generalized differential quadrature method is used to obtain the solutions, and is compared to exact analytical results. The methodology reported and the numerical results presented will be useful for the design of devices utilizing functionally graded piezoelectric actuators under the influence of shear.
Dr. Pankaj Sharma received his bachelor's in Mechanical Engineering from the College of Technology & Engineering Udaipur (formerly C.T.A.E. Udaipur) in 2000. He completed his master's (Machine Design) from Indian Institute of Technology Varanasi (formerly IT-BHU) in 2002, and his PhD from Rajasthan Technical University (RTU) Kota in 2017. He has been engaged in teaching for over thirteen years, and has also published several articles in peer-reviewed journals and conference proceedings. Since 2013, he has been working as Assistant Professor at the Department of Mechanical Engineering, RTU Kota. His research mainly focuses on design, vibration, and functionally graded piezoelectric actuators.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Acknowledgements;8
3;Contents;9
4;About the Author;11
5;1 An Overview;12
5.1;1.1 Introduction;12
5.2;1.2 Scope of the Book;13
6;2 Fundamentals of Piezoceramics;14
6.1;2.1 Introduction to Piezoelectric Materials and Piezoceramics;14
6.2;2.2 Conventional Axis Nomenclature for Piezoceramics;16
6.3;2.3 Constitutive Equations;17
6.3.1;2.3.1 Stress–Strain Relation;17
6.3.2;2.3.2 Strain–Displacement Relation;19
6.3.3;2.3.3 Maxwell Equation;19
6.3.4;2.3.4 Equations of Equilibrium;20
6.4;References;20
7;3 Basics of FGM and FGPM;21
7.1;3.1 Introduction of FGM;21
7.2;3.2 Material Gradient of FGM;22
7.2.1;3.2.1 Power Law Function (P-FGM);22
7.2.2;3.2.2 Exponential Law Function (E-FGM);23
7.2.3;3.2.3 Sigmoid Law Function (S-FGM);23
7.3;3.3 Introduction of FGPM/Need of FGPM;25
7.4;3.4 Applications of FGPMs;26
7.4.1;3.4.1 Bimorph Actuator;26
7.4.2;3.4.2 Ultrasonic Transducer;26
7.5;References;26
8;4 Fundamentals of DQ Method;28
8.1;4.1 Introduction;28
8.2;4.2 Types of Differential Quadrature (DQ) Methods;29
8.2.1;4.2.1 Polynomial Differential Quadrature (PDQ) Method;29
8.2.2;4.2.2 Fourier Differential Quadrature (FDQ) Method;30
8.2.3;4.2.3 Generalized Differential Quadrature (GDQ) Method;31
8.3;4.3 Implementation of Boundary Conditions;32
8.3.1;4.3.1 100-Technique;33
8.3.2;4.3.2 Modified Weighting Coefficient Matrix Approach (MWCM);33
8.3.3;4.3.3 Direct Substitution of the Boundary Conditions into Governing Equations (SBCGE);33
8.3.4;4.3.4 General Approach;34
8.4;4.4 Summary;34
8.5;References;34
9;5 Vibration Analysis of FGPM Beam;36
9.1;5.1 Introduction;38
9.2;5.2 Governing Equations;38
9.3;5.3 Solution Methodology;41
9.3.1;5.3.1 Approximate Solution: GDQ Method;41
9.3.2;5.3.2 Exact Solution;44
9.4;5.4 Discussions;46
9.5;5.5 Summary;52
9.6;References;52
10;6 Vibration Analysis of FGPM Annular Plate;54
10.1;6.1 Introduction;54
10.2;6.2 Governing Equations;55
10.3;6.3 Solution Methodology;60
10.4;6.4 Discussions;64
10.4.1;6.4.1 Convergence Study;64
10.4.2;6.4.2 Validation Study;65
10.4.3;6.4.3 Parametric Study;66
10.5;6.5 Summary;73
10.6;References;79
11;7 Summary and Conclusions;80
11.1;7.1 For FGPM Beam;80
11.2;7.2 For FGPM Annular Plate;81
11.3;Reference;81




