Sheather | A Modern Approach to Regression with R | E-Book | www.sack.de
E-Book

E-Book, Englisch, 398 Seiten

Reihe: Springer Texts in Statistics

Sheather A Modern Approach to Regression with R


1. Auflage 2009
ISBN: 978-0-387-09608-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 398 Seiten

Reihe: Springer Texts in Statistics

ISBN: 978-0-387-09608-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book focuses on tools and techniques for building valid regression models using real-world data. A key theme throughout the book is that it only makes sense to base inferences or conclusions on valid models.

Sheather A Modern Approach to Regression with R jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;7
2;Contents;11
3;Introduction;15
3.1;1.1 Building Valid Models;15
3.2;1.2 Motivating Examples;15
3.3;1.2.1 Assessing the Ability of NFL Kickers;15
3.4;1.2.2 Newspaper Circulation;18
3.5;1.2.3 Menu Pricing in a New Italian Restaurant in New York City;19
3.6;1.2.4 Effect of Wine Critics’ Ratings on Prices of Bordeaux Wines;22
3.7;1.3 Level of Mathematics;27
4;Simple Linear Regression;29
4.1;2.1 Introduction and Least Squares Estimates;29
4.2;2.1.1 Simple Linear Regression Models;29
4.3;2.2 Inferences About the Slope and the Intercept;34
4.4;2.2.1 Assumptions Necessary in Order to Make Inferences About the Regression Model;35
4.5;2.2.2 Inferences About the Slope of the Regression Line;35
4.6;2.2.3 Inferences About the Intercept of the Regression Line;37
4.7;2.3 Confidence Intervals for the Population Regression Line;38
4.8;2.4 Prediction Intervals for the Actual Value of Y;39
4.9;2.5 Analysis of Variance;41
4.10;2.6 Dummy Variable Regression;44
4.11;2.7 Derivations of Results;47
4.12;2.7.1 Inferences about the Slope of the Regression Line;48
4.13;2.7.2 Inferences about the Intercept of the Regression Line;49
4.14;2.7.3 Confidence Intervals for the Population Regression Line;50
4.15;2.7.4 Prediction Intervals for the Actual Value of Y;51
4.16;2.8 Exercises;52
5;Diagnostics and Transformations for Simple Linear Regression;58
5.1;3.1 Valid and Invalid Regression Models: Anscombe’s Four Data Sets;58
5.2;3.1.1 Residuals;61
5.3;3.1.2 Using Plots of Residuals to Determine Whether the Proposed Regression Model Is a Valid Model;62
5.4;3.1.3 Example of a Quadratic Model;63
5.5;3.2 Regression Diagnostics: Tools for Checking the Validity of a Model;63
5.6;3.2.1 Leverage Points;64
5.7;3.2.2 Standardized Residuals;72
5.8;3.2.3 Recommendations for Handling Outliers and Leverage Points;79
5.9;3.2.4 Assessing the Influence of Certain Cases;80
5.10;3.2.5 Normality of the Errors;82
5.11;3.2.6 Constant Variance;84
5.12;3.3 Transformations;89
5.13;3.3.1 Using Transformations to Stabilize Variance;89
5.14;3.3.2 Using Logarithms to Estimate Percentage Effects;92
5.15;3.3.3 Using Transformations to Overcome Problems due to Nonlinearity;96
5.16;3.4 Exercises;116
6;Weighted Least Squares;127
6.1;4.1 Straight-Line Regression Based on Weighted Least Squares;127
6.2;4.1.1 Prediction Intervals for Weighted Least Squares;130
6.3;4.1.2 Leverage for Weighted Least Squares;130
6.4;4.1.3 Using Least Squares to Calculate Weighted Least Squares;131
6.5;4.1.4 Defining Residuals for Weighted Least Squares;133
6.6;4.1.5 The Use of Weighted Least Squares;133
6.7;4.2 Exercises;134
7;Multiple Linear Regression;136
7.1;5.1 Polynomial Regression;136
7.2;5.2 Estimation and Inference in Multiple Linear Regression;141
7.3;5.3 Analysis of Covariance;151
7.4;5.4 Exercises;157
8;Diagnostics and Transformations for Multiple Linear Regression;161
8.1;6.1 Regression Diagnostics for Multiple Regression;161
8.2;6.1.1 Leverage Points in Multiple Regression;162
8.3;6.1.2 Properties of Residuals in Multiple Regression;164
8.4;6.1.3 Added Variable Plots;172
8.5;6.2 Transformations;177
8.6;6.2.1 Using Transformations to Overcome Nonlinearity;177
8.7;6.2.2 Using Logarithms to Estimate Percentage Effects: Real Valued Predictor Variables;194
8.8;6.3 Graphical Assessment of the Mean Function Using Marginal Model Plots;199
8.9;6.4 Multicollinearity;205
8.10;6.4.1 Multicollinearity and Variance Inflation Factors;213
8.11;6.5 Case Study: Effect of Wine Critics’ Ratings on Prices of Bordeaux Wines;213
8.12;6.6 Pitfalls of Observational Studies Due to Omitted Variables;220
8.13;6.6.1 Spurious Correlation Due to Omitted Variables;220
8.14;6.6.2 The Mathematics of Omitted Variables;223
8.15;6.6.3 Omitted Variables in Observational Studies;224
8.16;6.7 Exercises;225
9;Variable Selection;236
9.1;7.1 Evaluating Potential Subsets of Predictor Variables;237
9.2;7.1.1 Criterion 1: R;237
9.3;-Adjusted;237
9.4;7.1.2 Criterion 2: AIC, Akaike’s Information Criterion;239
9.5;7.1.3 Criterion 3: AIC;240
9.6;, Corrected AIC;240
9.7;7.1.4 Criterion 4: BIC, Bayesian Information Criterion;241
9.8;7.1.5 Comparison of AIC, AIC;241
9.9;and BIC;241
9.10;7.2 Deciding on the Collection of Potential Subsets of Predictor Variables;242
9.11;7.2.1 All Possible Subsets;242
9.12;7.2.2 Stepwise Subsets;245
9.13;7.2.3 Inference After Variable Selection;247
9.14;7.3 Assessing the Predictive Ability of Regression Models;248
9.15;7.3.1 Stage 1: Model Building Using the Training Data Set;248
9.16;7.3.2 Stage 2: Model Comparison Using the Test Data Set;256
9.17;7.4 Recent Developments in Variable Selection – LASSO;259
9.18;7.5 Exercises;261
10;Logistic Regression;271
10.1;8.1 Logistic Regression Based on a Single Predictor;271
10.2;8.1.1 The Logistic Function and Odds;273
10.3;8.1.2 Likelihood for Logistic Regression with a Single Predictor;276
10.4;8.1.3 Explanation of Deviance;279
10.5;8.1.4 Using Differences in Deviance Values to Compare Models;280
10.6;8.1.5 R;281
10.7;for Logistic Regression;281
10.8;8.1.6 Residuals for Logistic Regression;282
10.9;8.2 Binary Logistic Regression;285
10.10;8.2.1 Deviance for the Case of Binary Data;288
10.11;8.2.2 Residuals for Binary Data;289
10.12;8.2.3 Transforming Predictors in Logistic Regression for Binary Data;290
10.13;8.2.4 Marginal Model Plots for Binary Data;294
10.14;8.3 Exercises;302
11;Serially Correlated Errors;312
11.1;9.1 Autocorrelation;312
11.2;9.2 Using Generalized Least Squares When the Errors Are AR( 1);317
11.3;9.2.1 Generalized Least Squares Estimation;318
11.4;9.2.2 Transforming a Model with AR(1) Errors into a Model with iid Errors;322
11.5;9.2.3 A General Approach to Transforming GLS into LS;323
11.6;9.3 Case Study;326
11.7;9.4 Exercises;332
12;Mixed Models;337
12.1;10.1 Random Effects;337
12.2;10.1.1 Maximum Likelihood and Restricted Maximum Likelihood;340
12.3;10.1.2 Residuals in Mixed Models;351
12.4;10.2 Models with Covariance Structures Which Vary Over Time;359
12.5;10.2.1 Modeling the Conditional Mean;360
12.6;10.3 Exercises;374
13;Appendix: Nonparametric Smoothing;376
13.1;A.1 Kernel Density Estimation;376
13.2;A.2 Nonparametric Regression for a Single Predictor;379
13.3;A.2.1 Local Polynomial Kernel Methods;380
13.4;A.2.2 Penalized Linear Regression Splines;384
14;Index;392



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.