Shi / Choo / Chen | Security and Privacy in New Computing Environments | Buch | 978-3-030-96790-1 | sack.de

Buch, Englisch, Band 423, 396 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 622 g

Reihe: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

Shi / Choo / Chen

Security and Privacy in New Computing Environments

4th EAI International Conference, SPNCE 2021, Virtual Event, December 10-11, 2021, Proceedings
1. Auflage 2022
ISBN: 978-3-030-96790-1
Verlag: Springer International Publishing

4th EAI International Conference, SPNCE 2021, Virtual Event, December 10-11, 2021, Proceedings

Buch, Englisch, Band 423, 396 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 622 g

Reihe: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

ISBN: 978-3-030-96790-1
Verlag: Springer International Publishing


This book constitutes the refereed proceedings of the 4thInternational Conference on Security and Privacy in New Computing Environments, SPNCE 2021, held in December 2021. Due to COVID-19 pandemic the conference was held virtually.

The 33 full papers were selected from 61 submissions and focus on security and privacy in new computing environments. The theme of SPNCE 2021 was “Secure Wireless Communication Systems: Infrastructure, Algorithms, and Management”.

Shi / Choo / Chen Security and Privacy in New Computing Environments jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Blockchain-based Outsourcing Shared Car Risk Prediction Scheme Design.- Fairness Protection Method of Vickery Auction Based on Smart Contract.- An Improved Needham-Schroeder Session Key Distribution Protocol For In-Vehicle CAN Network.- Research on Two-Party Cooperative Aigis-sig Digital Signature Protocol.- An Efficient Unsupervised Domain Adaptation Deep Learning Model for Unknown Malware Detection.- A Lightweight PSIS Scheme Based on Multi-Node Collaboration in the IoT.- SAD: Website Fingerprint Defense based on Adversarial Examples.- A privacy-aware and time-limited data access control scheme with large universe and public traceability for Cloud-based IoD.- Multi-Party High-Dimensional Related Data Publishing via Probabilistic Principal Component Analysis and Differential Privacy.- ource code vulnerability detection method with multidimensional representation.- A Security Enhanced Verification Framework Based on Device Fingerprint in Internet of Things.- RLPassGAN: Password Guessing Model Based on GAN with Policy Gradient.- Linear Policy Recommender Scheme for Large-Scale Attribute-based Access Control.- Non-interactive Privacy-preserving Naive Bayes Classifier Using Homomorphic Encryption.- BA-Audit: blockchain-based public auditing for aggregated data sharing in edge-assisted IoT.- Predicting Congestion Attack of Variable Spoofing Frequency for Reliable Traffic Signal System.- Threat Detection-Oriented Network Security Situation Assessment Method.- System Business Affecting Impact Analysis Method with Crossover Probability Theory.- RAP: A Lightweight Application Layer Defense against Website Fingerprinting.- FL-iotDP: Differential Private Federated Neural Network.- Analysis of Vulnerability of IPsec Protocol Implementation Based on Differential Fuzzing.- Honeywords Generation Method Based on Deep Learning and Rule-based Password Attack.- Vulnerability Testing on the Key Scheduling Algorithm of PRESENT Using Deep Learning.- GLV/GLS Scalar Multiplication on Twisted Edwards Curves.- Online Privacy of Personal Information – Perceptions v Reality.- ARTPHIL: Reversible de-identification of free-text using an integrated model Bayan.- CAFM: Precise Classication for Android Family Malware.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.