E-Book, Englisch, 238 Seiten
Reihe: Mathematics and Statistics
Shimura Arithmetic of Quadratic Forms
1. Auflage 2010
ISBN: 978-1-4419-1732-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 238 Seiten
Reihe: Mathematics and Statistics
ISBN: 978-1-4419-1732-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;PREFACE;5
2;CONTENTS;8
3;NOTATION AND TERMINOLOGY;10
4;I THE QUADRATIC RECIPROCITY LAW;11
4.1;1. Elementary facts;11
4.2;2. Structure of (Z/mZ)×;14
4.3;3. The quadratic reciprocity law;15
4.4;4. Lattices in a vector space;21
4.5;5. Modules over a principal ideal domain;22
5;II ARITHMETIC IN AN ALGEBRAIC NUMBER FIELD;25
5.1;6. Valuations and p-adic numbers;25
5.2;7. Hensel’s lemma and its applications;32
5.3;8. Integral elements in algebraic extensions;35
5.4;9. Order functions in algebraic extensions;37
5.5;10. Ideal theory in an algebraic number field;45
6;III VARIOUS BASIC THEOREMS;56
6.1;11. The tensor product of fields;56
6.2;12. Units and the class number of a number field;59
6.3;13. Ideals in an extension of a number field;66
6.4;14. The discriminant and different;68
6.5;15. Adeles and ideles;75
6.6;16. Galois extensions;80
6.7;17. Cyclotomic fields;84
7;IV ALGEBRAS OVER A FIELD;88
7.1;18. Semisimple and simple algebras;88
7.2;19. Central simple algebras;95
7.3;20. Quaternion algebras;104
7.4;21. Arithmetic of semisimple algebras;109
8;V QUADRATIC FORMS;124
8.1;22. Algebraic theory of quadratic forms;124
8.2;23. Clifford algebras;129
8.3;24. Clifford groups and spin groups;136
8.4;25. Lower-dimensional cases;142
8.5;26. The Hilbert reciprocity law;149
8.6;27. The Hasse principle;152
9;VI DEEPER ARITHMETIC OF QUADRATIC FORMS;161
9.1;28. Classification of quadratic spaces over local and global fields;161
9.2;29. Lattices in a quadratic space;169
9.3;30. The genus and class of a lattice and a matrix;179
9.4;31. Integer-valued quadratic forms;187
9.5;32. Strong approximation in the indefinite case;194
9.6;33. Integer-valued symmetric forms;205
10;VII QUADRATIC DIOPHANTINE EQUATIONS;211
10.1;34. A historical perspective;211
10.2;35. Basic theorems of quadratic Diophantine equations;214
10.3;36. Classification of binary forms;221
10.4;37. New mass formulas;232
10.5;38. The theory of genera;236
11;REFERENCES;241
12;INDEX;243




