E-Book, Englisch, 279 Seiten, eBook
Reihe: NanoScience and Technology
Sidorenko Functional Nanostructures and Metamaterials for Superconducting Spintronics
1. Auflage 2018
ISBN: 978-3-319-90481-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
From Superconducting Qubits to Self-Organized Nanostructures
E-Book, Englisch, 279 Seiten, eBook
Reihe: NanoScience and Technology
ISBN: 978-3-319-90481-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;6
2;Preface;8
3;Contents;9
4;Contributors;14
5;Basic Superconducting Spin Valves;17
5.1;1 Introduction;18
5.2;2 Superconductor–Metallic Ferromagnet Proximity Effect;20
5.3;3 Elementary Superconducting Spin Valve: Diffusive Limit;22
5.4;4 Elementary Spin Valve with Strong Ferromagnets;26
5.4.1;4.1 Normal and Inverse Spin Valve Effects in the Elementary Structures;26
5.4.2;4.2 Superconducting Spin Valve Effect and the Domain Structures of Ferromagnets;27
5.4.3;4.3 Theory of Spin Valve in the Clean Limit;30
5.4.4;4.4 Parametric Spin Valve;31
5.5;5 Superconducting Spin Valve Effect in the S/F1/N/F2 Structures;35
5.6;6 Discussion and Conclusion;38
5.7;References;40
6;Superconducting Triplet Proximity and Josephson Spin Valves;46
6.1;1 Introduction;47
6.2;2 Superconductor–Ferromagnet Proximity Spin Valves;48
6.3;3 Superconducting Spin-Valve Effect in the S/F1/N/F2 Structures;50
6.4;4 Josephson Spin Valves with Ferromagnetic Weak Links;55
6.5;References;59
7;Compact Josephson ?-Junctions;63
7.1;1 Introduction;64
7.2;2 Model;66
7.3;3 Ramp- and Overlap-Type Geometries;69
7.4;4 Discussion and Conclusion;81
7.5;References;83
8;Magnetic Proximity Effect and Superconducting Triplet Correlations at the Heterostructure of Cuprate Superconductor and Oxide Spin Valve;86
8.1;1 Introduction;87
8.2;2 Experimental;88
8.3;3 Magnetic Proximity Effect;90
8.4;4 Superconducting Triplet Correlations;95
8.5;5 Conclusion;100
8.6;References;101
9;Nanodevices with Normal Metal—Insulator—Superconductor Tunnel Junctions;104
9.1;1 Introduction: The NIS Junction at a Glance;105
9.2;2 Fabrication Technology;106
9.3;3 Terahertz Band Conventional SINIS Bolometer;108
9.4;4 Mechanisms of Energy Relaxation and Time Scale;113
9.5;5 Electron Cooling of Absorber and Overheating of Superconductor;118
9.6;6 NIS Thermometer;120
9.7;7 Andreev Current and Hot Electron Traps;122
9.8;8 Current Response, Quantum Efficiency, and Thermalization;126
9.9;9 Conclusion;127
9.10;References;128
10;Multichroic Polarization Sensitive Planar Antennas with Resonant Cold-Electron Bolometers for Cosmology Experiments;130
10.1;1 Introduction. ESA Requirements;130
10.2;2 Seashell Antenna;131
10.3;3 Cross-Slot Antenna;134
10.4;4 Comparison and Discussion;138
10.5;References;139
11;Passive Millimeter-Wave Imaging Technology for Concealed Contraband Detection;141
11.1;1 Introduction;141
11.2;2 Theory of Passive Millimeter-Wave Imaging;142
11.2.1;2.1 Planck’s Radiation Law–Blackbody Radiation Detection Theory;143
11.2.2;2.2 Radiation Temperature Transfer Model of the Passive Millimeter-Wave Near-Field Imaging;146
11.3;3 Millimeter-Wave Radiometer;147
11.3.1;3.1 Key Technical Parameters of Millimeter-Wave Radiometer;147
11.3.2;3.2 Millimeter-Wave Direct Detection Radiometer;149
11.3.3;3.3 Calibration Method for the Radiometer Array Adopted in the Passive Millimeter-Wave Imaging System;151
11.4;4 Passive Millimeter-Wave Near-Field Imaging Feed Antenna;153
11.5;5 Quasi-optical Theory and Focusing Antenna for Passive Millimeter-Wave Near-Field Imaging;158
11.5.1;5.1 Quasi-optics Design Method;158
11.5.2;5.2 The Design of the Optical System Parameters;160
11.5.3;5.3 Design of Lens Curvature;161
11.6;6 Passive Millimeter-Wave Near-Filed Imaging System;164
11.6.1;6.1 20-Channel FPA System for Hidden Object Detection Under Human Clothing;165
11.6.2;6.2 High Spatial Resolution 70-Channel FPA System for Concealed Object Detection Under Human Clothing;166
11.7;References;170
12;Coupled Spin and Heat Transport in Superconductor Hybrid Structures;172
12.1;1 Introduction;172
12.2;2 Nonlocal Spin Transport;173
12.3;3 Spin-Dependent Thermoelectric Effects;175
12.4;4 Possible Applications;179
12.4.1;4.1 Thermometry;179
12.4.2;4.2 Cooling;181
12.5;5 Conclusion and Outlook;183
12.6;References;183
13;Lasing in Circuit Quantum Electrodynamics;186
13.1;1 Introduction;186
13.2;2 Requirements for Lasing;187
13.3;3 Circuit QED with Superconducting Quantum Systems;189
13.4;4 Lasing by Single Superconducting Artificial Atoms;193
13.4.1;4.1 Standard Lasing Scheme;193
13.4.2;4.2 Dressed-State Lasing;194
13.4.3;4.3 Landau–Zener–Stückelberg Lasing;200
13.5;5 Summary and Conclusion;203
13.6;References;204
14;Topology-Driven Effects in Advanced Micro- and Nanoarchitectures;206
14.1;1 Introduction;207
14.2;2 Topologic Effects in Quantum Rings by Virtue of Doubly Connectedness;208
14.3;3 Topologic Effects in Möbius Rings;211
14.4;4 Superconducting Vortices: Topological Defects in Micro- and Nanoarchitectures;217
14.5;5 Topologic States of Light in Microcavities;222
14.5.1;5.1 Resonant Modes of Light in a Möbius-Ring Resonator;222
14.5.2;5.2 Optical Spin–Orbit Coupling and Non-Abelian Evolution of Light in Asymmetric Microcavities;224
14.5.3;5.3 Non-Abelian Evolution of Light Polarization;225
14.6;6 Conclusions;228
14.7;References;229
15;Functional Magnetic Metamaterials for Spintronics;232
15.1;1 Introduction;233
15.2;2 Spin Waves in Width-Modulated Magnonic Crystal;235
15.3;3 Defect Spin-Wave Modes Coupling in Magnonic Crystals;239
15.4;4 Multimode Surface Magnetostatic Wave Propagation in Irregular Planar Magnonic Structure;244
15.5;5 Transverse Mode Coupling in Confined Multiferroics;250
15.6;6 Conclusion;254
15.7;References;255
16;Quantum Transport, Superconductivity, and Weak Ferromagnetism at Bicrystal Interfaces of Bi and 3D Topological Insulator BiSb;257
16.1;1 Introduction;258
16.2;2 Samples and Experimental Procedure;260
16.3;3 Results and Discussion;261
16.3.1;3.1 Fermi Surface Rearrangement in Bi and Bi1–xSbx (x?lt?0.18) Bicrystals;261
16.3.2;3.2 High-Field Quantum Transport in Bi and BiSb Bicrystals;264
16.3.3;3.3 Superconductivity and Weak Ferromagnetism at the Interface of Bicrystals of Bi and 3D Topological Insulator BiSb;266
16.4;4 Conclusions;272
16.5;References;272
17;Index;274




