Sidorenko | Functional Nanostructures and Metamaterials for Superconducting Spintronics | E-Book | www.sack.de
E-Book

E-Book, Englisch, 279 Seiten, eBook

Reihe: NanoScience and Technology

Sidorenko Functional Nanostructures and Metamaterials for Superconducting Spintronics

From Superconducting Qubits to Self-Organized Nanostructures
1. Auflage 2018
ISBN: 978-3-319-90481-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

From Superconducting Qubits to Self-Organized Nanostructures

E-Book, Englisch, 279 Seiten, eBook

Reihe: NanoScience and Technology

ISBN: 978-3-319-90481-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book demonstrates how the new phenomena in the nanometer scale serve as the basis for the invention and development of novel nanoelectronic devices and how they are used for engineering nanostructures and metamaterials with unusual properties. It discusses topics such as superconducting spin-valve effect and thermal spin transport, which are important for developing spintronics; fabrication of nanostructures from antagonistic materials like ferromagnets and superconductors, which lead to a novel non-conventional  FFLO-superconducting state; calculations of functional nanostructures with an exotic triplet superconductivity, which are the basis for novel nanoelectronic devices, such as superconducting spin valve, thin-film superconducting quantum interference devices (SQUIDs) and memory-elements (MRAM). Starting with theoretical chapters about triplet superconductivity, the book then introduces new ideas and approaches in the fundamentals of superconducting electronics. It presents various quantum devices based on the new theoretical approaches, demonstrating the enormous potential of the electronics of 21st century - spintronics. The book is useful for a broad audience, including researchers, engineers, PhD graduates, students and others wanting to gain insights into the frontiers of nanoscience.
Sidorenko Functional Nanostructures and Metamaterials for Superconducting Spintronics jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1;Foreword;6
2;Preface;8
3;Contents;9
4;Contributors;14
5;Basic Superconducting Spin Valves;17
5.1;1 Introduction;18
5.2;2 Superconductor–Metallic Ferromagnet Proximity Effect;20
5.3;3 Elementary Superconducting Spin Valve: Diffusive Limit;22
5.4;4 Elementary Spin Valve with Strong Ferromagnets;26
5.4.1;4.1 Normal and Inverse Spin Valve Effects in the Elementary Structures;26
5.4.2;4.2 Superconducting Spin Valve Effect and the Domain Structures of Ferromagnets;27
5.4.3;4.3 Theory of Spin Valve in the Clean Limit;30
5.4.4;4.4 Parametric Spin Valve;31
5.5;5 Superconducting Spin Valve Effect in the S/F1/N/F2 Structures;35
5.6;6 Discussion and Conclusion;38
5.7;References;40
6;Superconducting Triplet Proximity and Josephson Spin Valves;46
6.1;1 Introduction;47
6.2;2 Superconductor–Ferromagnet Proximity Spin Valves;48
6.3;3 Superconducting Spin-Valve Effect in the S/F1/N/F2 Structures;50
6.4;4 Josephson Spin Valves with Ferromagnetic Weak Links;55
6.5;References;59
7;Compact Josephson ?-Junctions;63
7.1;1 Introduction;64
7.2;2 Model;66
7.3;3 Ramp- and Overlap-Type Geometries;69
7.4;4 Discussion and Conclusion;81
7.5;References;83
8;Magnetic Proximity Effect and Superconducting Triplet Correlations at the Heterostructure of Cuprate Superconductor and Oxide Spin Valve;86
8.1;1 Introduction;87
8.2;2 Experimental;88
8.3;3 Magnetic Proximity Effect;90
8.4;4 Superconducting Triplet Correlations;95
8.5;5 Conclusion;100
8.6;References;101
9;Nanodevices with Normal Metal—Insulator—Superconductor Tunnel Junctions;104
9.1;1 Introduction: The NIS Junction at a Glance;105
9.2;2 Fabrication Technology;106
9.3;3 Terahertz Band Conventional SINIS Bolometer;108
9.4;4 Mechanisms of Energy Relaxation and Time Scale;113
9.5;5 Electron Cooling of Absorber and Overheating of Superconductor;118
9.6;6 NIS Thermometer;120
9.7;7 Andreev Current and Hot Electron Traps;122
9.8;8 Current Response, Quantum Efficiency, and Thermalization;126
9.9;9 Conclusion;127
9.10;References;128
10;Multichroic Polarization Sensitive Planar Antennas with Resonant Cold-Electron Bolometers for Cosmology Experiments;130
10.1;1 Introduction. ESA Requirements;130
10.2;2 Seashell Antenna;131
10.3;3 Cross-Slot Antenna;134
10.4;4 Comparison and Discussion;138
10.5;References;139
11;Passive Millimeter-Wave Imaging Technology for Concealed Contraband Detection;141
11.1;1 Introduction;141
11.2;2 Theory of Passive Millimeter-Wave Imaging;142
11.2.1;2.1 Planck’s Radiation Law–Blackbody Radiation Detection Theory;143
11.2.2;2.2 Radiation Temperature Transfer Model of the Passive Millimeter-Wave Near-Field Imaging;146
11.3;3 Millimeter-Wave Radiometer;147
11.3.1;3.1 Key Technical Parameters of Millimeter-Wave Radiometer;147
11.3.2;3.2 Millimeter-Wave Direct Detection Radiometer;149
11.3.3;3.3 Calibration Method for the Radiometer Array Adopted in the Passive Millimeter-Wave Imaging System;151
11.4;4 Passive Millimeter-Wave Near-Field Imaging Feed Antenna;153
11.5;5 Quasi-optical Theory and Focusing Antenna for Passive Millimeter-Wave Near-Field Imaging;158
11.5.1;5.1 Quasi-optics Design Method;158
11.5.2;5.2 The Design of the Optical System Parameters;160
11.5.3;5.3 Design of Lens Curvature;161
11.6;6 Passive Millimeter-Wave Near-Filed Imaging System;164
11.6.1;6.1 20-Channel FPA System for Hidden Object Detection Under Human Clothing;165
11.6.2;6.2 High Spatial Resolution 70-Channel FPA System for Concealed Object Detection Under Human Clothing;166
11.7;References;170
12;Coupled Spin and Heat Transport in Superconductor Hybrid Structures;172
12.1;1 Introduction;172
12.2;2 Nonlocal Spin Transport;173
12.3;3 Spin-Dependent Thermoelectric Effects;175
12.4;4 Possible Applications;179
12.4.1;4.1 Thermometry;179
12.4.2;4.2 Cooling;181
12.5;5 Conclusion and Outlook;183
12.6;References;183
13;Lasing in Circuit Quantum Electrodynamics;186
13.1;1 Introduction;186
13.2;2 Requirements for Lasing;187
13.3;3 Circuit QED with Superconducting Quantum Systems;189
13.4;4 Lasing by Single Superconducting Artificial Atoms;193
13.4.1;4.1 Standard Lasing Scheme;193
13.4.2;4.2 Dressed-State Lasing;194
13.4.3;4.3 Landau–Zener–Stückelberg Lasing;200
13.5;5 Summary and Conclusion;203
13.6;References;204
14;Topology-Driven Effects in Advanced Micro- and Nanoarchitectures;206
14.1;1 Introduction;207
14.2;2 Topologic Effects in Quantum Rings by Virtue of Doubly Connectedness;208
14.3;3 Topologic Effects in Möbius Rings;211
14.4;4 Superconducting Vortices: Topological Defects in Micro- and Nanoarchitectures;217
14.5;5 Topologic States of Light in Microcavities;222
14.5.1;5.1 Resonant Modes of Light in a Möbius-Ring Resonator;222
14.5.2;5.2 Optical Spin–Orbit Coupling and Non-Abelian Evolution of Light in Asymmetric Microcavities;224
14.5.3;5.3 Non-Abelian Evolution of Light Polarization;225
14.6;6 Conclusions;228
14.7;References;229
15;Functional Magnetic Metamaterials for Spintronics;232
15.1;1 Introduction;233
15.2;2 Spin Waves in Width-Modulated Magnonic Crystal;235
15.3;3 Defect Spin-Wave Modes Coupling in Magnonic Crystals;239
15.4;4 Multimode Surface Magnetostatic Wave Propagation in Irregular Planar Magnonic Structure;244
15.5;5 Transverse Mode Coupling in Confined Multiferroics;250
15.6;6 Conclusion;254
15.7;References;255
16;Quantum Transport, Superconductivity, and Weak Ferromagnetism at Bicrystal Interfaces of Bi and 3D Topological Insulator BiSb;257
16.1;1 Introduction;258
16.2;2 Samples and Experimental Procedure;260
16.3;3 Results and Discussion;261
16.3.1;3.1 Fermi Surface Rearrangement in Bi and Bi1–xSbx (x?lt?0.18) Bicrystals;261
16.3.2;3.2 High-Field Quantum Transport in Bi and BiSb Bicrystals;264
16.3.3;3.3 Superconductivity and Weak Ferromagnetism at the Interface of Bicrystals of Bi and 3D Topological Insulator BiSb;266
16.4;4 Conclusions;272
16.5;References;272
17;Index;274


Anatolie Sidorenko obtained his doctoral degree in 1979 at the Institute for Low Temperatures of Ukrainian Academy of Sciences, Kharkov, and habilitation degree in 1991 at the Institute of Applied Physics of Moldavian Academy of Sciences, Chisinau. He is currently Director of the Institute of Electronic Engineering and Nanotechnologies, Chisinau, Moldova. His research interest focus on properties of low dimensional systems, layered nanostructures and hybrids uperconductor/ferromagnet with emphasis on spintronics, superconductivity, transport and magnetic phenomena in functional nanostructures. Anatolie Sidorenko has edited the book “Fundamentals of Superconducting Nanoelectronics” (Springer, 2011) and co-edited “Nanoscale Phenomena – Fundamentals and Applications” (Springer, 2009), he is associate editor of the Beilstein Journal of Nanotechnology. Anatolie Sidorenko is a member of the Moldavian Academy of Sciences since 2012 and DPG member since 2001.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.