E-Book, Englisch, Band Volume 37, 350 Seiten
Simpson / Casas Advances in Insect Physiology
1. Auflage 2009
ISBN: 978-0-08-088873-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Physiology of Human and Animal Disease Vectors
E-Book, Englisch, Band Volume 37, 350 Seiten
Reihe: Advances in Insect Physiology
ISBN: 978-0-08-088873-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
This latest volume in this series contains articles on the physiology of human and animal disease vectors. The papers in this special issue give rise to key themes for the future and make progress towards answering such questions as:How do insect vectors of disease find their animal hosts?Once a host is located, how do insects deploy their intricate mouthparts and the extraordinary complexities of salivary chemistry to secure a blood meal? - Contributions from the leading researchers in entomology - Discusses the physiological diversity in insects - Includes in-depth reviews with valuable information for a variety of entomology disciplines
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover
;1
2;Advances in Insect Physiology
;4
3;Copyright Page
;5
4;Contents
;6
5;Contributors
;8
6;Preface
;10
7;Chapter 1: Orientation Towards Hosts in Haematophagous Insects: An Integrative Perspective
;12
7.1;1 Introduction
;13
7.2;2 Functional neuroanatomy ;14
7.3;3 A brief history of haematophagy ;16
7.3.1;3.1 The Relationship Between Insects And Vertebrate Hosts
;17
7.3.2;3.2 Feeding on Blood
;17
7.4;4 The host signals
;18
7.4.1;4.1 Odours
;18
7.4.2;4.2 Heat
;19
7.4.3;4.3 Water Vapour
;21
7.4.4;4.4 Visual Cues
;23
7.5;5 Looking for food
;25
7.5.1;5.1 Activation
;26
7.5.2;5.2 Appetitive Search
;26
7.5.3;5.3 Host Detextion
;27
7.5.4;5.4 Host Finding
;27
7.5.5;5.5 Host Contact
;28
7.5.6;5.6 Host Biting
;28
7.5.7;5.7 Food Recognition and Feeding
;29
7.5.8;5.8 Leaving the Host
;31
7.6;6 Stimulus propagation and sensory reception
;31
7.7;7 Orientation mechanisms
;34
7.8;8 Thermal sensing in kissing bugs
;37
7.9;9 Sensory parsimony
;45
7.9.1;9.1 Parsimonious Use of Information In Blood-Sucking Insects
;45
7.9.2;9.2 Practical Consequences
;46
7.10;10 State-dependency of host-seeking behaviour
;47
7.10.1;10.1 The Temporal Modulation of the Response to Odours
;48
7.10.2;10.2 Maturation and Responsiveness
;49
7.10.3;10.3 The Modulation of Host-Seeking Activity by Reproduction
;50
7.10.4;10.4 Feeding Conditions and Host Searching
;51
7.11;11 Why some people are bitten more than others?
;52
7.12;12 Learning and memory
;53
7.13;13 Repellents, how they work
;53
7.14;14 Conclusions and perspectives
;54
7.15;Acknowledgments;59
7.16;References;59
8;Chapter 2: From Sialomes to the Sialoverse: An Insight into Salivary Potion of Blood-Feeding Insects
;70
8.1;1 Insects discover blood as food;71
8.2;2 Blood feeders like fast food: A historical perspective;74
8.3;3 Problems faced by arthropods when taking blood;75
8.3.1;3.1 Haemostasis
;75
8.3.2;3.2 Inflammation
;77
8.3.3;3.3 Annoying Itching
;78
8.3.4;3.4 hellip and pain hellip
;81
8.3.5;3.5 The Attacked Endothelium Fights Back
;81
8.3.6;3.6 Microbiological Concerns
;81
8.4;4 Toward a longitudinal definition of the salivary components of blood-feeding insects
;81
8.4.1;4.1 Enzymes
;82
8.4.2;4.2 Receptor Antagonism and Platelet Aggregation Inhibitors
;86
8.4.3;4.3 Physiological Antagonists, Primarily Vasodilators
;87
8.4.4;4.4 Kratagonists
;88
8.4.5;4.5 Protease Inhibitors
;91
8.4.6;4.6 Anaesthetics
;93
8.4.7;4.7 Antigen (Ag5) Family Members
;98
8.4.8;4.8 Immunity-Related Products
;98
8.4.9;4.9 The Unexpected
;99
8.5;5 Salivary diversity;99
8.6;6 The evolutionary scramble;101
8.7;7 On the odd, the paradoxical, the bizarre and the bias;105
8.8;8 Measuring the size of our ignorance;106
8.8.1;8.1 A Forecast of the Costs and Time Required for Acquiring Sialome Wisdom
;110
8.9;9 Salivary antigens: Epidemiological tools?;110
8.10;Acknowledgments;111
8.11;References
;111
9;Chapter 3: The Enemy Within: Interactions Between Tsetse, Trypanosomes and Symbionts
;130
9.1;1 Background;131
9.1.1;1.1 Human and Animal Trypanosomiases
;131
9.1.2;1.2 Trypanosome Species
;132
9.1.3;1.3 Tsetse Identification and Distribution
;133
9.1.4;1.4 Tsetse Life Cycle and Physiology
;134
9.1.5;1.5 Trypanosome (t. brucei sspp.) life cycle: development and differentiation
;137
9.2;2 Tsetse-trypanosome interactions;140
9.2.1;2.1 Parasite Surface Coat
;141
9.2.2;2.2 Host Blood Factors
;142
9.2.3;2.3 Tsetse Midgut Environment and Signals for Differentiation
;144
9.2.4;2.4 Trypanosomes and Tsetse Digestive Enzymes
;145
9.2.5;2.5 Tsetse Immune System
;146
9.2.6;2.6 Effects of Trypanosome Infection on Tsetse Physiology
;159
9.2.7;2.7 Fly Sex, Age and Starvation and Trypanosome Transmission
;160
9.2.8;2.8 Environmental Temperature and Trypanosome Transmission
;162
9.3;3 Symbiont-tsetse-trypanosome interactions;163
9.3.1;3.1 Wigglesworthia Glossinidius
;163
9.3.2;3.2 Wolbachia Pipientis
;164
9.3.3;3.3 Sodalis Glossinidius
;164
9.4;4 Towards new methods of disease control;167
9.4.1;4.1 Gene Knockdown in Glossina
;167
9.4.2;4.2 Paratransgenesis
;169
9.5;5 Conclusion;170
9.6;Acknowledgments;171
9.7;References;171
10;Chapter 4: Interactions of Trypanosomatids and Triatomines
;188
10.1;1 Introduction;188
10.2;2 Triatomines;189
10.2.1;2.1 Distribution
;189
10.2.2;2.2 Development
;190
10.2.3;2.3 Intestinal Tract, Digestion and Excretion
;193
10.2.4;2.4 The Intestinal Microenvironment
;194
10.3;3 The trypanosomatids;201
10.3.1;3.1 Distribution of Species and Strains
;201
10.3.2;3.2 Developmental Cycle in the Triatomines
;206
10.4;4 Effects of the host on trypanosomatids;209
10.4.1;4.1 Susceptibility and Refractoriness
;209
10.4.2;4.2 Effects of Ph, Osmolality and Ionic Composition
;211
10.4.3;4.3 Effects of the Border Face
;211
10.4.4;4.4 Effects of Microorganisms and Antimicrobial Compounds
;214
10.4.5;4.5 Effects of Digestion, Digestion Products and Excretion
;215
10.4.6;4.6 Effects of Other Soluble Factors
;220
10.5;5 Effects of trypanosomatids on triatomines;221
10.5.1;5.1 Classification of Pathogenicity and Action of Secondary Stressors
;221
10.5.2;5.2 Pathogenicity of Blastocrithidia Triatomae and Trypanosoma Rangeli
;222
10.5.3;5.3 Subpathogenicity of Trypanosomatids in Triatomines
;228
10.6;6 Interactions in double infections;230
10.7;7 Conclusions;231
10.8;Acknowledgments;231
10.9;References;231
11;Chapter 5: Lyme Disease Spirochete–Tick–Host Interactions
;254
11.1;1 Introduction;254
11.2;2 Tick biology and physiology;255
11.2.1;2.1 Argasidae
;256
11.2.2;2.2 Ixodidae
;257
11.2.3;2.3 Feeding Characteristics of Ixodid Ticks
;258
11.2.4;2.4 Host Responses to Tick Feeding
;259
11.2.5;2.5 Anti-Haemostatic Tick Salivary Components
;260
11.2.6;2.6 Anti-Inflammatory Tick Salivary Components
;266
11.2.7;2.7 Immunosuppressive Tick Salivary Components
;270
11.2.8;2.8 Tick Midgut Components
;278
11.2.9;2.9 Tick Haemolymph Components
;281
11.3;3 B. burgdorferi biology and interaction with tick vectors;283
11.3.1;3.1 Genome of b. Burgdorferi
;283
11.3.2;3.2 b. Burgdorferi genes that facilitate tick colonization and persistence
;284
11.3.3;3.3 Tick Proteins that Facilitate Borrelia Transmission
;288
11.4;4 Summary;290
11.5;Acknowledgments;290
11.6;References;290
12;Chapter 6: Epidemiological Consequences of the Ecological Physiology of Ticks
;308
12.1;1 Introduction;308
12.2;2 Physiological adaptations for tick feeding habits;310
12.2.1;2.1 Cuticle Structure and Function
;311
12.2.2;2.2 Adaptive Patterns of Cuticular Wax Deposition
;312
12.2.3;2.3 Respiration and Metabolic Rates;315
12.3;3 Water balance, defence and consequences for pathogen conveyance;316
12.3.1;3.1 Osmoregulation: Spitting into The Host
;316
12.3.2;3.2 Immunomodulation: Salivary Pharmacology;317
12.3.3;3.3 Pathogen Traffic;320
12.4;4 Seeking a host - Where and when?;321
12.4.1;4.1 Water Balance Constraints;322
12.4.2;4.2 Sensory Systems;325
12.4.3;4.3 Recruitment of Unfed Ticks to The Questing Population;327
12.4.4;4.4 Fat Reserves Determine Lifespan;334
12.5;5 Epidemiological consequences of tick phenology;334
12.5.1;5.1 Focal Distribution of Tick-Borne Encephalitis;335
12.5.2;5.2 Widespread, but Partitioned, Sistribution of B. Burgdorferi S. L.;337
12.5.3;5.3 Sensitivity to Climate Versus Impact of Climate Change;338
12.6;6 Conclusions;339
12.7;Acknowledgments;340
12.8;References;340
13;Index
;352
14;Color Plates
;360
Chapter 1 Orientation Towards Hosts in Haematophagous Insects
An Integrative Perspective
Claudio R. Lazzari
1. Introduction
- (1) Which sensory processes are responsible for distinguishing between behaviourally relevant and irrelevant stimuli?
- (2) How are signals localized in space and time?
- (3) How is information acquired, stored and recalled?
- (4) What is the neurophysiological basis for the motivation of a behavioural pattern?
- (5) How is behaviour coordinated and controlled by the central nervous system?
- (6) How is behaviour ontogeny related to neuronal mechanisms?
2. Functional neuroanatomy
- ? In A. gambiae, antibody labelling and subsequent three-dimensional reconstructions of the antennal lobes showed that males have 61 glomerular neuropils and females have 60. The size of the antennal lobe and of individual glomeruli was also tested for sexual dimorphism (Ghaninia et al., 2007b).
- ? In A. aegypti, sexual dimorphism has been demonstrated both for the number of total glomeruli (49 in males and 50 in females) and size of certain glomeruli (Ignell et al., 2005).
- ? Maxillary palp projections in A. aegypti are restricted to two posteromedial glomeruli, which do not receive antennal afferents. These include nerve projections from carbon dioxide receptors, which project to a single glomerulus (Anton, 1996 and Anton et al., 2003).
- ? Five non-overlapping projection zones were identified within the antennal lobe of A. gambiae, with one zone receiving input exclusively from maxillary palp sensilla and two zones each receiving input exclusively from trichoid or grooved-peg antennal sensilla (Anton and Rospars, 2004).
- ? Extensive serotonergic neurohemal plexi have been observed in the peripheral chemosensory organs of A. aegypti and A. gambiae, that is in the antenna, the maxillary palp and the labium, suggesting a potential role of serotonin as a neuromodulator in the chemosensory system (Siju et al., 2008).
- ? The central projections of the contact chemoreceptors in the labium and cibarium of A. gambiae and A. aegypti have been described in detail (Ignell and Hansson, 2005).