Sobczyk | Stochastic Differential Equations | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 40, 400 Seiten, eBook

Reihe: Mathematics and its Applications

Sobczyk Stochastic Differential Equations

With Applications to Physics and Engineering
1991
ISBN: 978-94-011-3712-6
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark

With Applications to Physics and Engineering

E-Book, Englisch, Band 40, 400 Seiten, eBook

Reihe: Mathematics and its Applications

ISBN: 978-94-011-3712-6
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark



Sobczyk Stochastic Differential Equations jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction: Origin of Stochastic Differential Equations.- I. Stochastic Processes — Short ResumÉ.- 1. Introductory Remarks.- 2. Probability and Random Variables.- 2.1. Basic concepts.- 2.2. Some probability distributions.- 2.3. Convergence of sequences of random variables.- 2.4. Entropy and information of random variables.- 3. Stochastic Processes — Basic Concepts.- 4. Gaussian Processes.- 5. Stationary Processes.- 6. Markov Processes.- 6.1. Basic definitions.- 6.2. Diffusion processes.- 6.3. Methods of solving the Kolmogorov equation.- 6.4. Vector diffusion processes.- 7. Processes With Independent Increments; Wiener Process And Poisson Process.- 7.1. Definition and general properties.- 7.2. Wiener process.- 7.3. Poisson process.- 7.4. Processes related to Poisson process.- 8. Point Stochastic Processes.- 9. Martingales.- 10. Generalized Stochastic Processes; White Noise.- 11. Processes with Values in Hilbert Space.- 12. Stochastic Operators.- Examples.- II. Stochastic Calculus: Principles and Results.- 13. Introductory Remarks.- 14. Processes of Second Order; Mean Square Analysis.- 14.1. Preliminaries.- 14.2. Mean-square continuity.- 14.3. Mean-square differentiation.- 14.4. Mean-square stochastic integrals.- 14.5. Orthogonal expansions.- 14.6. Transformations of second-order stochastic processes.- 14.7. Mean-square ergodicity.- 15. Analytical Properties of Sample Functions.- 15.1. Sample function integration.- 15.2. Sample function continuity.- 15.3. Sample function differentiation.- 15.4. Relation to second-order properties.- 16. ITÔ Stochastic Integral.- 17. Stochastic Differentials. ITÔ Formula.- 18. Counting Stochastic Integral.- 19. Generalizations.- Examples.- III. Stochastic Differential Equations: Basic Theory.- 20. Introductory Remarks.- 21. Regular Stochastic Differential Equations.- 21.1. Mean-square theory.- 21.2. Sample function solutions.- 21.3. Analysis via stochastic operators.- 21.4. Asymptotic analysis.- 21.5. Stationary solutions.- 22. ITÔ Stochastic Differential Equations.- 22.1. Existence and uniqueness of a solution.- 22.2. Relation to Stratonovich interpretation.- 22.3. State transformations and simple solutions.- 22.4. Asymptotic properties.- 22.5. Equations with Markov coefficients.- 22.6. Equations with jump processes.- 22.7. Equations with functional coefficients.- 22.8. Strong and weak solutions.- 23. Stochastic Abstract Differential Equations.- 23.1. Introduction; deterministic theory.- 23.2. Itô stochastic equations.- 23.3. Other problems.- IV. Stochastic Differential Equations: Analytical Methods.- 24. Introductory Remarks.- 25. Systems with Random Initial Conditions.- 25.1. Probability distribution of solution.- 25.2. Liouville equation.- 26. Linear Systems with Random Excitation.- 26.1. Solution and its properties.- 26.2. Stationary solutions; Spectral method.- 26.3. Nonstationary excitations: random impulses.- 26.4. Linear systems and normality.- 27. Nonlinear Systems with Random Excitation.- 27.1. White noise excitation.- 27.2. Real random excitation.- 27.3. Use of maximum entropy principle.- 28. Stochastic Systems.- 28.1. General remarks.- 28.2. Systems with parametric uncertainty.- 28.3. White noise parametric excitation.- 28.4. Real random parametric excitation.- 29. Stochastic Partial Differential Equations.- 29.1. Use of Hilbert space formulation.- 29.2. Stochastic KdV equation.- V. Stochastic Differential Equations: Numerical Methods.- 30. Introductory Remarks.- 31. Deterministic Equations: Basic Numerical Methods.- 31.1. Some approximate methods.- 31.2. Basic numerical schemes.- 32. Approximate Schemes for Regular Stochastic Equations.- 32.1. Method of successive approximation.- 32.2. Approximation and simulation.- 33. Numerical Integration of ITÔ Stochastic Equations.- 33.1. Preliminaries.- 33.2. Stochastic Euler scheme.- 33.3. Milshtein scheme.- 33.4. Stochastic Runge-Kutta schemes.- 33.5. Multi-dimensional systems.- 33.6. Approximation and simulation.- VI. Applications: Stochastic Dynamics of Engineering Systems.- 34. Introduction.- 34.1. General remarks.- 34.2. Underlying models for stochastic dynamics.- 35. Random Vibrations of Road Vehicles.- 35.1. On road-induced excitation.- 35.2. Response to random road roughness.- 36. Response of Structures to Turbulent Field.- 36.1. On turbulent-induced excitation.- 36.2. Random vibrations of elastic plate.- 37. Response of Structures To Earthquake Excitation.- 37.1. Description of earthquake excitation.- 37.2. Stochastic seismic response.- 38. Response of Structures to Sea Waves.- 38.1. Description of sea wave excitation.- 38.2. Ship motion in random sea waves.- 38.3. Response of offshore platforms.- 39. Stochastic Stability of Structures.- 39.1. Stability of column.- 39.2. Stability of suspension bridge.- 40. Other Problems.- Appendix..- A.1. Cauchy formula.- A.2. Gronwall-Bellman inequality.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.