Stuart | Ultrasonics International 93 | E-Book | www.sack.de
E-Book

E-Book, Englisch, 880 Seiten, Web PDF

Stuart Ultrasonics International 93

Conference Proceedings
1. Auflage 2013
ISBN: 978-1-4831-8393-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Conference Proceedings

E-Book, Englisch, 880 Seiten, Web PDF

ISBN: 978-1-4831-8393-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Ultrasonics International 93: Conference Proceedings presents a comprehensive account of the presentations given in the Ultrasonics International 93 conference. It discusses a blood flow mapping system using ultrasonic waves. It addresses the dynamical response functions of elastically anisotropic solids. Some of the topics covered in the book are the ultrasonic waves propagation in a liquid producing radicals; ultrasonic characterization of interfaces; surface acoustic wave measurements; line-focus-beam acoustic microscopy; investigation of fatigue cracks in steels using spherical lens scanning acoustic microscopy; and the phenomenon of ultrasonic light diffraction. The description of bichromatic tunable acousto-optic separator is fully covered. The diffraction phenomenon affecting the properties of the fibre-optic sensor system is discussed in detail. The text describes in depth the opto-acoustic measurement of ultrasound velocity in a solidifying polymer. The evaluation of microfracture due to thermal shock using acoustic emission is completely presented. A chapter is devoted to the detection of a weak adhesive and adherent interface in bonded joints. The book can provide useful information to engineers, students, and researchers.

Dr. Sam Stuart is a physiotherapist and a research Fellow within the Balance Disorders Laboratory, OHSU. His work focuses on vision, cognition and gait in neurological disorders, examining how technology-based interventions influence these factors. He has published extensively in world leading clinical and engineering journals focusing on a broad range of activities such as real-world data analytics, algorithm development for wearable technology and provided expert opinion on technology for concussion assessment for robust player management. He is currently a guest editor for special issues (sports medicine and transcranial direct current stimulation for motor rehabilitation) within Physiological Measurement and Journal of NeuroEngineering and Rehabilitation, respectively.
Stuart Ultrasonics International 93 jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Ultrasonics International 93;4
3;Copyright Page;5
4;Table of Contents ;6
5;Organizing Panel;18
6;Exhibition;19
7;Foreword;20
8;Part I: Plenary papers;22
8.1;Chapter 1. Colour Doppler Imaging and its Application in Diagnosis;22
8.1.1;INTRODUCTION;22
8.1.2;BLOOD FLOW MEASUREMENT;22
8.1.3;PHASE DETECTION AND AUTOCORRELATION TECHNIQUE;23
8.1.4;BLOOD FLOW DISPLAY;24
8.1.5;CLINICAL TESTS;25
8.1.6;CONCLUSION;25
8.1.7;REFERENCES;25
9;Part II: Invited papers;28
9.1;Chapter 2. Waves in Anisotropic Media;28
9.1.1;I. INTRODUCTION;28
9.1.2;II. DYNAMICAL GREEN'S FUNCTIONS;29
9.1.3;III· COMPARISON WITH EXPERIMENT;31
9.1.4;IV. REFERENCES;33
9.2;Chapter 3. Exposure measurements in extracorporeal shock wave lithotripsy;34
9.2.1;INTRODUCTION;34
9.2.2;IN VIVO MEASUREMENTS;36
9.2.3;CONCLUSIONS;37
9.2.4;References;38
9.3;Chapter 4. Sonochemistry, from Organic Synthesis to Tribochemistry;40
9.3.1;INTRODUCTION;40
9.3.2;SONOCHEMICAL REACTIONS USING NON METALS;40
9.3.3;HETEROGENEOUS SONOCHEMISTRY WITH METALS;41
9.3.4;MECHANISM OF THE METAL ACTIVATION;41
9.3.5;ELECTRON TRANFERS IN SONOCHEMISTRY;42
9.3.6;CONCLUSION;42
9.3.7;REFERENCES;42
9.4;Chapter 5. Ultrasonic Characterization of Interfaces;46
9.4.1;INTRODUCTION;46
9.4.2;MODELING OF IMPERFECT INTERFACE BETWEEN TWO SOLIDS;47
9.4.3;ULTRASONIC CHARACTERIZATION OF INTERFACIAL DEGRADATION IN ADHESIVE JOINTS;51
9.4.4;FIBER-MATRIX INTERFACE CHARACTERIZATION IN COMPOSITES;53
9.4.5;REFERENCES;56
10;Part III: Acoustic microscopy: oral papers;62
10.1;Chapter 6. Amplitude and Phase Variation of Surface Acoustic Wave Field in the Nanometer Level Measured with a Scanning Tunneling Microscope;62
10.1.1;INTRODUCTION;62
10.1.2;EXPERIMENT;63
10.1.3;DISCUSSION;63
10.1.4;REFERENCES;64
10.2;Chapter 7. Measurement of dispersion relations in acoustic velocities for the thin film on an anisotropic substrate using acoustic microscope;66
10.2.1;INTRODUCTION;66
10.2.2;EXPERIMENTAL SETUP;66
10.2.3;RESULTS;67
10.2.4;CONCLUSION;68
10.2.5;REFERENCES;68
10.3;Chapter 8. Quantitative Evaluation of 36°YX-LiTaO3 Wafers by LFB Acoustic Microscopy;70
10.3.1;INTRODUCTION;70
10.3.2;THEORETICAL CONSIDERATION;70
10.3.3;EXPERIMENTS CONDUCTED;71
10.3.4;SUMMARY;72
10.3.5;REFERENCES;72
10.4;Chapter 9. Scanning Acoustic Microscopy for Quantitative Analysis of Superplastic Forming Diffusion Bonding of Titanium Aerospace Components;74
10.4.1;INTRODUCTION;74
10.4.2;THE DOMAIN OF APPLICATION;74
10.4.3;THE USE OF HIGH FREQUENCY ULTRASOUND;74
10.4.4;THE RESULTS;75
10.4.5;CONCLUSION;76
10.4.6;REFERENCES;76
11;Part IV: Acousticmicroscopy: poster papers;78
11.1;Chapter 10. Acoustic Microscopy for Fatigue Damage;78
11.1.1;INTRODUCTION;78
11.1.2;EXPERIMENTAL;78
11.1.3;RESULTS;79
11.1.4;DISCUSSION;79
11.1.5;CONCLUSIONS;80
11.1.6;REFERENCES;80
11.1.7;ACKNOWLEDGMENT;81
11.2;Chapter 11. Application of the V(z) curves to determination elastic properties of spherical objects;82
11.2.1;INTRODUCTION;82
11.2.2;THEORY;82
11.2.3;EXPERIMENTAL RESULTS;83
11.2.4;CONCLUSION;84
11.2.5;REFERENCES;84
11.3;Chapter 12. The Effect of "Spherical Particle Size Reduction" in Imaging of Species by the Reflection Acoustic Microscope;86
11.3.1;INTRODUCTION;86
11.3.2;THEORY;86
11.3.3;RESULTS;87
11.3.4;CONCLUSION;88
11.3.5;REFERENCES;88
12;Part V: Acousto-optics: oral papers;90
12.1;Chapter 13. Higher Order Bragg Diffraction of Light by Ultrasound : Theory and Experiment;90
12.1.1;INTRODUCTION;90
12.1.2;THEORY;90
12.1.3;EXPERIMENT;91
12.1.4;RESULTS AND CONCLUSION;92
12.1.5;ACKNOWLEDGEMENT;92
12.1.6;REFERENCES;92
12.2;Chapter 14. ACOUSTO-OPTIC MODULATOR USING A PIEZOELECTRIC FILM OVER GaAs/AIGaAs MQW STRUCTURE;94
12.2.1;INTRODUCTION;94
12.2.2;ABSORPTION COEFFICIENT OF MQW IN ACOUSTO-OPTIC MODULATORS;94
12.2.3;SAW INDUCED ELECTRIC FIELD IN THE MQW STRUCTURE;95
12.2.4;CONCLUSION;96
12.2.5;REFERENCES;96
12.3;Chapter 15. Acousto-Optic Measurement of Pressure Profiles in Ultrasonic Fields;98
12.3.1;INTRODUCTION;98
12.3.2;THEORETICAL CONSIDERATIONS;98
12.3.3;EXPERIMENT;99
12.3.4;ANALYSIS;99
12.3.5;RESULTS AND CONCLUSIONS;100
12.3.6;ACKNOWLEDGEMENTS;100
12.3.7;REFERENCES;100
12.4;Chapter 16. Super High Frequency (10 GHz) Acousto-Optics. The Peculiarity of Devices Design;102
12.4.1;INTRODUCTION;102
12.4.2;THE MULTI ELEMENT TRANSDUCERS FOR ACOUSTO-OPTICS;103
12.4.3;THE THEORETICAL ASPECTS;103
12.4.4;THE TECHNICAL ASPECTS;104
12.4.5;THE EXPERIMENTAL RESULTS;104
12.4.6;CONCLUSION;105
12.4.7;REFERENCES;105
12.5;Chapter 17. Broadband SAW Phase–Weighted Chirp Transducers for Integrated Acoustooptic Scanners;106
12.5.1;INTRODUCTION;106
12.5.2;TRANSDUCER DESIGN;106
12.5.3;FABRICATION AND EXPERIMENTAL RESULTS;107
12.5.4;CONCLUSION;108
12.5.5;ACKNOWLEDGEMENTS;109
12.5.6;REFERENCES;109
12.6;Chapter 18. Bichromatic tunable acoustooptic separator;110
12.6.1;THEORY;110
12.6.2;EXPERIMENTAL VALIDATION.;111
12.6.3;REFERENCES;113
12.7;Chapter 19. Resonant Acousto-optical Properties of GaAs and InP and Application to Device Improvement;114
12.7.1;INTRODUCTION;114
12.7.2;RESONANCE ACOUSTO-OPTICAL MEASUREMENTS;114
12.7.3;DISCUSSION;115
12.7.4;REFERENCES;116
12.8;Chapter 20. DIFFRACTION PHENOMENA AFFECTING THE PROPERTIES OF THE FIBREOPTIC SENSOR SYSTEM;118
12.8.1;INTRODUCTION;118
12.8.2;SIMPLIFIED MODEL OF THE SENSOR CHARACTERISTICS;118
12.8.3;EXPERIMENTAL ASSESSMENT;120
12.8.4;ACKNOLEDGEMENTS;121
12.8.5;REFERENCES;121
13;Part VI: Acousto-optics: posterpa pers;122
13.1;Chapter 21. Computative Investigation of the Planar Acoustooptic Deflector;122
13.1.1;INTRODUCTION;122
13.1.2;PERFORMANCE OF SAW TRANSDUCERS AND THE AO INTERACTION;122
13.1.3;AIM OF THE PROGRAM PACKAGE;123
13.1.4;CONCLUSIONS;124
13.1.5;THE MODIFIED STRUCTURE;124
13.1.6;REFERENCES;124
13.2;Chapter 22. A Dynamic-Access-Time Acousto-Optic Correlator for GPS Doppler Resolving ;126
13.2.1;INTRODUCTION;126
13.2.2;THE GPS SIGNAL-ACQUISITION PRINCIPLE;126
13.2.3;THE DYNAMIC-ACCESS-TIME ACOUSTO-OPTIC PROCESSOR;127
13.2.4;THE DOPPLER EFFECT;127
13.2.5;THE ACQUISITION SYSTEM;128
13.2.6;CONCLUSION - PERSPECTIVES;128
13.2.7;REFERENCES;128
13.3;Chapter 23. Peculiarities of Acoustooptic Interaction in a Nonhomogeneous Acoustic Field;130
13.3.1;INTRODUCTION;130
13.3.2;CHARACTERISTICS OF LIGHT DIFFRACTION BY TWO ACOUSTIC BEAMS;131
13.3.3;SUMMARY;131
13.3.4;CONCLUSION;132
13.3.5;REFERENCES;132
13.4;Chapter 24. Optoacoustic Measurement of Ultrasound Velocity in a Solidifying Polymer;134
13.4.1;INTRODUCTION;134
13.4.2;EXPERIMENTS AND RESULTS;135
13.4.3;CONCLUSION;135
13.4.4;REFERENCES;136
14;Part VII: Transducers: oral papers;138
14.1;Chapter 25. Performance of Multi-layer PZT Transducer Arrays;138
14.1.1;I. INTRODUCTION;138
14.1.2;II. METHODS;139
14.1.3;III. RESULTS;140
14.1.4;IV. DISCUSSION;141
14.1.5;REFERENCES;141
14.2;Chapter 26. 1-3 piezo-composite material: 3D modelling and experimental results;142
14.2.1;INTRODUCTION;142
14.2.2;NUMERICAL AND EXPERIMENTAL PROCEDURES;143
14.2.3;RESULTS AND DISCUSSION;143
14.2.4;CONCLUSION;144
14.2.5;REFERENCES;144
14.3;Chapter 27. Vibrational Modes of Two-Dimensional Periodic and Aperiodic Composite Piezoelectric Plates;146
14.3.1;INTRODUCTION;146
14.3.2;2D PERIODIC COMPOSITE;146
14.3.3;SIERPINSKI CARPET COMPOSITE;147
14.3.4;CONCLUSION;147
14.3.5;REFERENCES;147
14.4;Chapter 28. Three Dimensional Model For The Mode Analysis of a Loaded Piezoceramic Plate;150
14.4.1;INTRODUCTION;150
14.4.2;ANALYTICAL MODELLING;150
14.4.3;EXPERIMENTAL RESULTS;151
14.4.4;CONCLUSION;152
14.4.5;REFERENCES;152
14.5;Chapter 29. Acoustic transducers based on the periodic domain structure in lead germanate;154
14.5.1;THE PRINCIPLE OF DOMAIN ULTRASONIC TRANSDUCER;154
14.5.2;SOME DEVICES USING DAT;155
14.5.3;THE PERSPECTIVES OF THE DAT USING;156
14.5.4;REFERENCES;157
14.6;Chapter 30. Gaussian-Beam Expansion For Focused Transducers;158
14.6.1;INTRODUCTION;158
14.6.2;THEORY;158
14.6.3;EXPERIMENTAL SETUP;159
14.6.4;GAUSSIAN-BEAM EXPANSION;159
14.6.5;CONCLUSIONS;160
14.6.6;REFERENCES;160
14.7;Chapter 31. A Simplified Numerical Method To Predict The Impulse Radiation Pattern Of Linear And Curved Array Transducers;162
14.7.1;INTRODUCTION;162
14.7.2;SIMULATION METHOD;163
14.7.3;RESULTS AND DISCUSSION;163
14.7.4;CONCLUSION;164
14.7.5;REFERENCES;164
14.8;Chapter 32. Calculation of Electromechanical Coupling Coefficients of Ultrasonic Lamb Waves;166
14.8.1;INTRODUCTION AND ANALYSIS;166
14.8.2;CALCULATIONS AND RESULTS;167
14.8.3;REFERENCES;168
14.9;Chapter 33. Influence of the Layer Coupling the Transducer to the Sample in Acoustic Impedancemetry;170
14.9.1;INTRODUCTION;170
14.9.2;COUPLING LAYER INFLUENCE;170
14.9.3;SOME USEFUL FORMULA (ß' neglected);171
14.9.4;SAMPLE AND COUPLING LAYER CHARACTERISTICS;171
14.9.5;CONCLUSION;173
14.9.6;REFERENCES;173
14.10;Chapter 34. High-efficiency generation of acoustic phase conjugate waves by nonlinear piezoelectricity of PZT ceramics;174
14.10.1;INTRODUCTION;174
14.10.2;THEORY;174
14.10.3;EXPERIMENT;175
14.10.4;CONCLUSION;176
14.10.5;REFERENCES;176
14.10.6;INTRODUCTION;178
14.10.7;PRINCIPLE OF OPERATION;178
14.10.8;EXPERIMENTAL;179
14.10.9;REFERENCES;179
15;Part VIII: Transducers: poster papers;178
15.1;Chapter 35. Surface Acoustic Wave Probe for Nondestructive Testing;178
15.1.1;INTRODUCTION;178
15.1.2;PRINCIPLE OF OPERATION;178
15.1.3;EXPERIMENTAL;179
15.1.4;REFERENCES;179
15.2;Chapter 36. Analysis of Resonator with Directional Converter of R-L Type by Finite Elements Method;182
15.2.1;INTRODUCTION;182
15.2.2;ANALYSIS OF R-L TYPE CONVERTER;182
15.2.3;CONCLUSION;184
15.2.4;REFERENCES;184
15.3;Chapter 37. Comparison of Microphone and Interferometric Detection of Laser Generated Acoustic Waves;186
15.3.1;INTRODUCTION;186
15.3.2;EXPERIMENTAL;186
15.3.3;RESULTS AND DISCUSSION;187
15.3.4;CONCLUSION;188
15.3.5;REFERENCES;188
15.4;Chapter 38. Prediction of Electroacoustic Performances of High Frequency P(VDF-TrFE) Transducers.;190
15.4.1;INTRODUCTION;190
15.4.2;PIEZOELECTRIC MATERIAL;190
15.4.3;TRANSDUCER DESIGN;191
15.4.4;TRANSDUCER SIMULATIONS;191
15.4.5;MEASUREMENTS;191
15.4.6;RESULTS-DISCUSSION;191
15.4.7;CONCLUSION;192
15.4.8;REFERENCES;192
15.5;Chapter 39. The Capacitance Transducer as a Standard Ultrasonic Source in Solids;194
15.5.1;INTRODUCTION;194
15.5.2;THEORY;194
15.5.3;EXPERIMENTAL and RESULTS;195
15.5.4;CONCLUSIONS;196
15.5.5;REFERENCES;196
15.6;Chapter 40. Thermoacoustic Sensor for Ultrasonic Power Measurements;198
15.6.1;INTRODUCTION;198
15.6.2;MEASUREMENT PROCEDURE;198
15.6.3;EQUILIBRIUM TEMPERATURE;199
15.6.4;DETERMINATION OF THE TRANSMITTING RESPONSE;199
15.6.5;CONCLUSION;200
15.6.6;REFERENCES;200
15.7;Chapter 41. Study of the Nearfield Radiated by Stepped Plate Ultrasonic Transducers in Air;202
15.7.1;INTRODUCTION;202
15.7.2;EXPERIMENTAL SET UP;203
15.7.3;EXPERIMENTAL RESULTS;203
15.7.4;CONCLUSIONS;204
15.7.5;REFERENCES;204
15.8;Chapter 42. INFLUENCE OF DIFFERENT PHYSICAL PARAMETERS ON THE PIEZOELECTRIC PROPERTIES OF Sr MODIFIED LEAD METANIOBATE;206
15.8.1;INTRODUCTION;206
15.8.2;RESULTS AND DISCUSSION;206
15.8.3;CONCLUSION;208
15.8.4;REFERENCES;208
15.8.5;ACKNOWLEDGEMENTS;208
15.9;Chapter 43. GHz-range Wide Band and Low-loss SAW Filters Using Internal Floating Electrode Type Unidirectional Transducers;210
15.9.1;Introduction;210
15.9.2;Structures of FEUDTs;210
15.9.3;Experimental results of directivity;210
15.9.4;Application to low loss filters;211
15.9.5;Resistivity of Al thin films;212
15.9.6;Conclusions;213
15.9.7;References;213
15.10;Chapter 44. The Characteristics of a High Power Ultrasonic Transducer Determined by the Experimental Technique;214
15.10.1;INTRODUCTION;214
15.10.2;SETUP AND MEASUREMENT METHOD OF THE EXPERIMENT;215
15.10.3;EXPERIMENTAL RESULTS;215
15.10.4;DISCUSSION;216
15.10.5;REFERENCES;216
15.11;Chapter 45. Numerical Computation of the Acoustic Field Passing Through a Plane Interface; Application to New Phased Array Transducers;218
15.11.1;INTRODUCTION;218
15.11.2;MODEL AND COMPUTATIONAL DETAILS;219
15.11.3;EXPERIMENT;220
15.11.4;RESULTS-DISCUSSION;220
15.11.5;CONCLUSIONS;220
15.11.6;REFERENCES;220
15.12;Chapter 46. The Effects of Non-uniform Sampling of the Ultrasound Field on the Reconstruction of Transducer Source Distributions;222
15.12.1;SIMULATION OF NON-UNIFORM SAMPLING;222
15.12.2;EFFECTS OF POSITIONAL JITTER;223
15.12.3;OPTIMAL FILTERING;223
15.12.4;CONCLUDING REMARKS;224
15.12.5;ACKNOWLEDGEMENTS;224
15.12.6;REFERENCES;224
15.13;Chapter 47. Ultrasonic Metering of Gas Flows;226
15.13.1;INTRODUCTION;226
15.13.2;DESCRIPTION OF THE METER;226
15.13.3;RESULTS;228
15.13.4;CONCLUSION;229
15.13.5;REFERENCES;229
15.14;Chapter 48. An Efficient Airborne Ultrasonic Transducer;230
15.14.1;An Efficient Airborne Ultrasonic Transducer;230
15.14.2;INTRODUCTION;230
15.14.3;EVOLUTION OF THE TRANSDUCER;230
15.14.4;THE TRANSDUCER;231
15.14.5;RESULTS;231
15.14.6;CONCLUSION;232
15.14.7;ACKNOWLEDGMENT;232
15.14.8;REFERENCES;232
15.15;Chapter 49. A Study of Acoustic Birefringence in Aluminium Plate Using Broadband Electromagnetic Acoustic Transducers (EMATs);234
15.15.1;INTRODUCTION;234
15.15.2;THEORY;235
15.15.3;EXPERIMENTAL PROCEDURE AND RESULTS;236
15.15.4;CONCLUSION;236
15.15.5;REFERENCES;237
16;Part IX: NDE/NDT: oral papers;238
16.1;Chapter 50. Autofocusing ultrasonic propagation in composite media based on laser generated ultrasound;238
16.1.1;I Introduction;238
16.1.2;II Thermoelastic generation in composite materials;238
16.1.3;Ill Slowness surface and focusing effect;238
16.1.4;IV Experimental results and discussion;239
16.1.5;V Conclusion;240
16.1.6;References;240
16.2;Chapter 51. AE SOURCE CHARACTERIZATION IN LATTICE–TYPE STRUCTURES USING SMART SIGNAL PROCESSING;242
16.2.1;INTRODUCTION;242
16.2.2;EXPERIMENTAL SET–UP AND MEASURMENTS;243
16.2.3;NEURAL–LIKE SIGNAL PROCESSING ALGORITHMS;244
16.2.4;RESULTS;245
16.2.5;CONCLUSIONS;247
16.2.6;ACKNOWLEDGEMENTS;247
16.2.7;REFERENCES;247
16.3;Chapter 52. Advanced Ultrasonic Probes for Scanning of Large Structures;248
16.3.1;INTRODUCTION;248
16.3.2;ULTRASONIC SCAN PROBES;248
16.3.3;CONCLUSION;249
16.4;Chapter 53. Time-Domain Ultrasonic NDE of Layered Media;252
16.4.1;INTRODUCTION;252
16.4.2;THEORY AND SENSITIVITY ANALYSIS;252
16.4.3;RESULTS AND CONCLUSIONS;254
16.4.4;ACKNOWLEDGEMENT;254
16.4.5;REFERENCE;255
16.5;Chapter 54. Design of Low Frequency Acoustic Waveguide Probe for NDT of Concrete Structures;256
16.5.1;INTRODUCTION;256
16.5.2;CONCEPT OF AN ACOUSTIC WAVEGUIDE;256
16.5.3;PRINCIPLE OF OPERATION;257
16.5.4;NUMERICAL RESULTS;257
16.5.5;EXPERIMENTAL RESULTS;258
16.5.6;ACKNOWLEDGEMENT;258
16.5.7;REFERENCES;258
17;Part X: NDE/NDT: poster papers;260
17.1;Chapter 55. AE propertie s in superconducting rotor;260
17.1.1;INTRODUCTION;260
17.1.2;SUPERCONDUCTING ROTOR AND A E DETECTING SYSTEM;260
17.1.3;EXTERNAL/INTERNAL FORCE FACTOR & AE;261
17.1.4;SIMPLIFIED MODEL AND TWO AE;261
17.1.5;EXPERIMENTAL RESULTS AND DISCUSSIONS;262
17.2;Chapter 56. Evaluation of Microfracture due to Thermal Shock by Acoustic Emission;264
17.2.1;INTRODUCTION;264
17.2.2;EXPERIMENTAL;264
17.2.3;RESULTS AND DISCUSSION;265
17.2.4;CONCLUSIONS;267
17.2.5;REFERENCES;267
17.3;Chapter 57. Study of E-glass Fibres at Elevated Temperatures using Acoustic Emission;268
17.3.1;1. INTRODUCTION;268
17.3.2;2. ACOUSTIC EMISSION TECHNIQUE;268
17.3.3;3. RESULTS;268
17.3.4;4. CONCLUSIONS;269
17.3.5;5. REFERENCES;270
17.4;Chapter 58. Analysis of Grinding Process Acoustic Emission by a Neural Network;272
17.4.1;INTRODUCTION;272
17.4.2;THE EXPERIMENTAL SET-UP AND ESTIMATION SYSTEM;272
17.4.3;ANALYSIS AND RESULTS;273
17.4.4;DISCUSSION AND CONCLUSION;274
17.4.5;REFERENCES;274
17.5;Chapter 59. Ultrasonic NDE Guided Wave Mode Selection Principles;276
17.5.1;INTRODUCTION;276
17.5.2;SAMPLE RESULTS;279
17.5.3;CONCLUDING REMARKS;279
17.5.4;ACKNOWLEDGEMENT;280
17.5.5;REFERENCES;281
17.6;Chapter 60. THE DETECTION OF A WEAK ADHESIVE/ADHEREND INTERFACE IN BONDED JOINTS;282
17.6.1;INTRODUCTION;282
17.6.2;PREDICTION OF THE REFLECTION COEFFICIENTS;282
17.6.3;EXPERIMENTS;283
17.6.4;CONCLUSIONS;284
17.6.5;REFERENCES;284
17.7;Chapter 61. Ultrasonic Evaluation of Ceramics During Manufacture;286
17.7.1;INTRODUCTION;286
17.7.2;APPARATUS AND EXPERIMENTS;286
17.7.3;RESULTS AND DISCUSSION;287
17.7.4;CONCLUSIONS;287
17.7.5;REFERENCES;288
17.7.6;ACKNOWLEDGEMENTS;288
17.8;Chapter 62. Characterization of the Interface between Two Polymers by Surface Acoustic Waves;290
17.8.1;INTRODUCTION;290
17.8.2;EXPERIMENTAL;290
17.8.3;RESULTS AND DISCUSSION;291
17.8.4;THEORETICAL INTERPRETATION;291
17.8.5;CONCLUSION;292
17.8.6;REFERENCES;292
17.9;Chapter 63. APPLICATION OF THE INFORMATION THEORY APPROACH TO ACOUSTIC METHODS OF TEXTURE ASSESSMENT;294
17.9.1;INTRODUCTION;294
17.9.2;FORMULATION OF THE PROBLEM AND ITS SOLUTION;294
17.9.3;NUMERICAL RESULTS;296
17.9.4;REFERENCES;297
17.10;Chapter 64. INTERACTION OF LAMB WAVES WITH A DEFECT;298
17.10.1;INTRODUCTION;298
17.10.2;THEORY OF ROKHLIN;298
17.10.3;PRINCIPLE OF MEASUREMENT;298
17.10.4;EXPERIMENTAL RESULTS;299
17.10.5;CONCLUSION;299
17.10.6;REFERENCES;299
17.11;Chapter 65. DYNAMIC HARDNESS TESTER AND CURE METER;302
17.11.1;INTRODUCTION;302
17.11.2;THEORY;303
17.11.3;EXPERIMENT;305
17.11.4;REFERENCES;306
17.12;Chapter 66. Fungi Decay in Wood by Combined Nondestructive Testings;308
17.12.1;INTRODUCTION;308
17.12.2;METHODS;308
17.12.3;RESULTS;309
17.12.4;CONCLUSION;309
17.12.5;ACKNOWLEDGEMENTS;310
17.13;Chapter 67. A broad band technique to simultaneously measure the compression and shear acoustic wave velocities in thin samples of engineering material;312
17.13.1;INTRODUCTION;312
17.13.2;GONIOMETER METHOD;313
17.13.3;MEASUREMENT SYSTEM;313
17.13.4;EXPERIMENTAL RESULTS;314
17.13.5;DISCUSSION AND CONCLUSIONS;315
17.13.6;REFERENCES;315
17.14;Chapter 68. An integrated wideband ultrasonic signal acquisition instrument;316
17.14.1;INTRODUCTION;316
17.14.2;INTERLEAVING;316
17.14.3;SIGNAL AVERAGING;317
17.14.4;TESTING;317
17.14.5;CONCLUSION;318
17.14.6;REFERENCES;318
17.15;Chapter 69. AUTOMATIC ALGORITHMS FOR DIGITAL SIGNAL PROCESSING TO CHARACTERISE THE PROPAGATION OF ULTRASOUND IN THIN ADHESIVE LAYERS;320
17.15.1;INTRODUCTION;320
17.15.2;BASELINE CORRECTION;320
17.15.3;PEAK WINDOWING;322
17.15.4;CONCLUSION;323
17.15.5;REFERENCES;323
17.16;Chapter 70. Thickness Measurements Based on a New Time Discrimination Technique;324
17.16.1;INTRODUCTION;324
17.16.2;THEORY;325
17.16.3;EXPERIMENTAL RESULTS ON CONCRETE;326
17.16.4;CONCLUSION;326
17.16.5;REFERENCES;326
17.17;Chapter 71. Ultrasonic Description of the Condition of the Surface Layer of Asphalt Concrete Pavement;328
17.17.1;INTRODUCTION;328
17.17.2;METHOD;329
17.17.3;THE EXPERIMENTAL SECTION;329
17.17.4;OBSERVATIONS AND STANDARD EXAMINATIONS;329
17.17.5;STATISTICAL ANALYSIS;330
17.17.6;SUMMARY;330
17.17.7;REFERENCES;331
17.18;Chapter 72. Defect sizing in thin components;332
17.18.1;INTRODUCTION;332
17.18.2;THE MODEL;332
17.18.3;CALCULATING THE PRESSURE DISTRIBUTION USING CORNER EFFECT;333
17.18.4;RESULTS OF EXPERIMENTS AND SIMULATIONS;334
17.18.5;CONCLUSION;334
17.18.6;REFERENCES;334
17.19;Chapter 73. UT Modeling: Predictions of edge Diffraction, Corner Effect and Mode Conversions;336
17.19.1;INTRODUCTION;336
17.19.2;POSITION OF THE PROBLEM;336
17.19.3;MODELING;337
17.19.4;VALIDATION;337
17.19.5;CONCLUSION;338
17.19.6;REFERENCES;338
17.20;Chapter 74. Dynamic Measurements of Elastic Properties in Solid Circular Cylinders;340
17.20.1;INTRODUCTION;340
17.20.2;THEORY;340
17.20.3;EXPERIMENTS;341
17.20.4;RESULTS AND CONCLUSIONS;341
17.20.5;REFERENCES;342
17.21;Chapter 75. Ultrasonic Characterization of Epoxy Resin during Cure;344
17.21.1;INTRODUCTION;344
17.21.2;EXPERIMENTAL;344
17.21.3;RESULTS AND DISCUSSION;345
17.21.4;CONCLUSION;346
17.21.5;REFERENCES;346
17.22;Chapter 76. Negative Factors Influencing the ultrasonic Inspection of Railway Axle Structure;348
17.22.1;INTRODUCTION;348
17.22.2;DISCUSSION;348
17.22.3;CONCLUSION;351
17.22.4;REFERENCES;351
17.23;Chapter 77. Ultrasonic Nondestructive Evaluation of Thin (Sub-Wavelength) Coatings;352
17.23.1;INTRODUCTION;352
17.23.2;TRANSFER FUNCTIONS AND SENSITIVITY ANALYSIS;352
17.23.3;RESULTS AND CONCLUSIONS;353
17.23.4;ACKNOWLEDGEMENT;353
17.23.5;REFERENCE;353
17.24;Chapter 78. Improved NDT performance through the use of extremely damped 1-3 piezocomposite transducers;356
17.24.1;1. INTRODUCTION;356
17.24.2;2. PIEZOCOMPOSITE PRINCIPLES AND ADVANTAGES;356
17.24.3;3. THE REMOTE HEAD;357
17.24.4;4. EXPERIMENTAL RESULTS;358
17.24.5;5. CONCLUSION;359
17.24.6;REFERENCES;359
17.25;Chapter 79. 3D Ultrasonic Modelling;360
17.25.1;INTRODUCTION;360
17.25.2;MODELISATION OF ULTRASONIC PROPAGATION IN THE SOLID;360
17.25.3;MODELISATION OF PROPAGATION IN THE FLUID;361
17.25.4;COMPARISON OF NUMERICAL AND EXPERIMENTAL SIGNALS;361
17.25.5;VARIATION OF PARAMETERS;361
17.25.6;APPLICATION;362
17.25.7;CONCLUSION;362
17.25.8;REFERENCE;362
18;Part XI: Two phase media: oral papers;364
18.1;Chapter 80. Ultrasonic Puls-Echo Measurements of Bubble and Plug Velocities in a Gas-Liquid Two-Phase Flow;364
18.1.1;INTRODUCTION;364
18.1.2;FUNDAMENTAL EQUATIONS OF BUBBLE MOTION;364
18.1.3;EXPERIMENTAL RESULTS AND DISCUSSION;365
18.1.4;CONCLUSION;365
18.1.5;REFERENCES;365
18.2;Chapter 81. Ultrasonic Investigation of Contact Surfaces between Grains in Random Granular Media; Effects of a Variable Compression;368
18.2.1;INTRODUCTION;368
18.2.2;MODEL FOR A SET OF ARRAYS OF SPHERES IN CONTACT;368
18.2.3;EXPERIMENTAL PROCEDURES AND RESULTS;370
18.2.4;CONCLUSION;371
18.2.5;REFERENCES;371
18.3;Chapter 82. Biot's Slow Wave in Porous Materials I. Velocity Dispersion Measurements;372
18.3.1;INTRODUCTION;372
18.3.2;EXPERIMENTAL METHOD;372
18.3.3;CONCLUSIONS;374
18.3.4;ACKNOWLEDGEMENTS;374
18.3.5;REFERENCES;374
18.4;Chapter 83. Theory and Adaptive Algorithms Related to the Split Spectrum Technique for Interference Noise Suppression;376
18.4.1;INTRODUCTION;376
18.4.2;POLARITY THRESHOLDING IN A NEURAL NETWORK FORMALISM;376
18.4.3;SPLIT SPECTRUM AND THE SHORT TIME FOURIER TRANSFORM;377
18.4.4;MEMORYLESS SPLIT SPECTRUM ALGORITHMS;378
18.4.5;DISCUSSION;378
18.4.6;REFERENCES;378
19;Part XII:Two phase media: posterpaper;380
19.1;Chapter 84. A Parameter-Free Signal Processing Algorithm for Material Noise Suppression;380
19.1.1;INTRODUCTION;380
19.1.2;FRAGMENT SPECTRUM PROCESSING;381
19.1.3;EXPERIMENTAL RESULTS;381
19.1.4;CONCLUDING REMARKS;382
19.1.5;ACKNOWLEDGEMENTS;382
19.1.6;REFERENCES;382
20;Part XIII: Physicala stics–crystals: oralpaper;384
20.1;Chapter 85. Characterizing Sub-millimeter Crystals with a Wide-band GHz Interferometer;384
20.1.1;INTRODUCTION;384
20.1.2;THE INTERFEROMETER;384
20.1.3;THE EFFECT OF THE BOND;385
20.1.4;ACKNOWLEDGMENT;386
20.1.5;REFERENCES;386
21;Part XIV: Physicala stics–crystals: poster papers;388
21.1;Chapter 86. Ultrasonic Attenuation in Polycrystals Including Crystallographic Orientation Correlation;388
21.1.1;INTRODUCTION;388
21.1.2;CONTRIBUTIONS TO THE OVERALL ATTENUATION;388
21.1.3;EFFECT OF ORIENTATION CORRELATION;389
21.1.4;CONCLUSIONS;390
21.1.5;REFERENCES;390
21.2;Chapter 87. Ultrasonic Absorption Studies of Some Doped Mixed Crystals of CaCl2 in KBr-KCl;392
21.2.1;INTRODUCTION;392
21.2.2;EXPERIMENTAL PROCEDURE;392
21.2.3;RESULTS and DISCUSSION;393
21.2.4;REFERENCES;395
22;Part XV: Physic alacoustics–anisotropy: oral papers;396
22.1;Chapter 88. EVALUATION OF INTERFACIAL PROPERTIES IN ISOTROPIC AND ANISOTROPIC LAYER SUBSTRATES;396
22.1.1;INTRODUCTION;396
22.1.2;BACKGROUND;396
22.1.3;IMPERFECT INTERFACES;397
22.1.4;THE EFFECT OF ANISOTROPY;399
22.1.5;SUMMARY AND CONCLUSIONS;400
22.1.6;ACKNOWLEDGMENTS;400
22.1.7;REFERENCES;400
22.2;Chapter 89. Three-Dimensional Transient Waves in Layered Elastic Media;404
22.2.1;INTRODUCTION;404
22.2.2;THE FUNDAMENTAL SOLUTION;404
22.2.3;NUMERICAL EXAMPLES;406
22.2.4;REFERENCES;407
22.3;Chapter 90. Anisotropy in the Acoustic Transmission Properties of Fibre-Reinforced Laminates: Theoretical Prediction and Experimental Observation;408
22.3.1;INTRODUCTION;408
22.3.2;EXPERIMENTAL SYSTEM AND MEASUREMENT TECHNIQUE;408
22.3.3;THEORY;409
22.3.4;RESULTS AND DISCUSSION;409
22.3.5;CONCLUSION;409
22.3.6;ACKNOWLEDGEMENT;410
22.3.7;REFERENCES;410
22.4;Chapter 91. Propagation of Leaky Surface Acoustic Waves on LiTaO3 Substrate;412
22.4.1;INTRODUCTION;412
22.4.2;THEORY;412
22.4.3;RESULTS AND DISCUSSION;413
22.4.4;CONCLUSION;415
22.4.5;ACKNOWLEDGEMENT;415
22.4.6;REFERENCES;415
22.5;Chapter 92. Acoustic Waves Propagation in Anisotropic Materials : Polarizations and Slowness Surfaces Singularities;416
22.5.1;INTRODUCTION;416
22.5.2;THEORETICAL BACKGROUND;416
22.5.3;RESULTS;417
22.5.4;CONCLUSION;418
22.5.5;REFERENCES;418
23;Part XVI: Physicala coustics–anisotropy: poster papers;420
23.1;Chapter 93. Surface waves in anisotropic solids: theoretical calculation and experiment;420
23.1.1;INTRODUCTION;420
23.1.2;EXPERIMENTAL WORKS;420
23.1.3;THEORY FOR ANISOTROPIC SURFACE WAVES;421
23.1.4;RESULTS AND DISCUSSIONS;421
23.1.5;CONCLUSIONS;422
23.1.6;ACKNOWLEDGMENT;422
23.1.7;REFERENCES;422
23.2;Chapter 94. EXISTENCE OF ONE COMPONENT SURFACE WAVES IN ANISOTROPIC ELASTIC MEDIA;424
23.2.1;INTRODUCTION;424
23.2.2;THEORETICAL OUTLINE;424
23.2.3;NUMERICAL EXAMPLES;426
23.2.4;CONCLUSIONS;427
23.2.5;ACKNOWLEDGEMENT;427
23.2.6;REFERENCES;427
23.3;Chapter 95. EXISTENCE OF SECOND SLIP WAVES IN ANISOTROPIC ELASTIC MEDIA;428
23.3.1;INTRODUCTION;428
23.3.2;GENERAL THEORY;428
23.3.3;EXISTENCE CRITERIA;429
23.3.4;CONCLUSION;430
23.3.5;REFERENCES;430
23.3.6;A NUMERICAL EXAMPLE;431
24;Part XVII: Physicala coustics-composites: oral papers;432
24.1;Chapter 96. Characterization of Thin, Fiber-reinforced Laminates by Ultrasonic Point-source/Point-receiver Techniques;432
24.1.1;INTRODUCTION;432
24.1.2;ULTRASONIC SYSTEMS FOR THIN SPECIMENS;433
24.1.3;ANALYSIS AND RESULTS;433
24.1.4;CONCLUSIONS;434
24.1.5;REFERENCES;434
24.2;Chapter 97. Far-field Directivity Patterns For (YZw)36° Lithium Niobate Bars;436
24.2.1;INTRODUCTION;436
24.2.2;I. EXTRAPOLATION ALGORITHM FOR FAR-FIELD DIRECTIVITY PATTERN COMPUTATION;436
24.2.3;II. IN-AIR ELECTRICAL IMPEDANCE AND FAR-FIELD DIRECTIVITY PATTERNS (YZw)36° TRANSDUCER BAR;437
24.2.4;CONCLUSION;438
24.3;Chapter 98. The Effect of Debonding in Fibre-Reinforced Composites on Ultrasonic Backscattering;440
24.3.1;INTRODUCTION;440
24.3.2;THEORETICAL WORK;440
24.3.3;THIN AIR SHELL MODEL;440
24.3.4;SLIP MODEL;441
24.3.5;EXPERIMENTAL WORK;441
24.3.6;CONCLUSION;442
24.3.7;REFERENCES;442
24.4;Chapter 99. A Feasibility Study of the On-line Characterization of Polymers Blends using Ultrasound;444
24.4.1;INTRODUCTION;444
24.4.2;MATERIALS AND WAVE PROPAGATION;445
24.4.3;EXPERIMENTAL PROCEDURE AND RESULTS;446
24.4.4;CONCLUSIONS;446
24.4.5;REFERENCES;446
24.5;Chapter 100. Multilayer PVDF Polymer Transducers for Pulse Compression Applications;448
24.5.1;INTRODUCTION;448
24.5.2;CRITERIA IN SELECTION OF BINARY CODE PATTERN;448
24.5.3;SIMULATION RESULTS;449
24.5.4;CONSTRUCTION AND TESTING OF BARKER CODED TRANSDUCERS;449
24.5.5;CONCLUSION;449
24.5.6;REFERENCES;450
24.6;Chapter 101. Transmission coefficient of multilayered absorbing anisotropic media. A solution to the numerical limitations of the Thomson-Haskell method. Application to composite materials;452
24.6.1;Introduction;452
24.6.2;I. Transmission coefficient of multilayered absorbing anisotropic plates;452
24.6.3;II. Numerical instabilities of the method;453
24.6.4;III. A solution to the numerical instabilities of the method;453
24.6.5;IV. Results and discussion;454
24.6.6;Conclusion;454
24.6.7;References;455
25;Part XVIII: Physical acoustics-composites: poster paper;456
25.1;Chapter 102. DISPERSION OF LONGITUDINAL ULTRASONIC WAVE VELOCITY THROUGH CARBON-EPOXY COMPOSITE MATERIALS;456
25.1.1;INTRODUCTION;456
25.1.2;RESULTS FROM A-SCAN AND ULTRASONIC SPECTROSCOPY STUDIES;456
25.1.3;MULTILAYER MODELING;457
25.1.4;STUDY OF THE ELASTIC WAVE DISPERSION;458
25.1.5;CONCLUSION;459
25.1.6;REFERENCES;459
26;Part XIX: Physical acoustics: oral papers;460
26.1;Chapter 103. Enhancement of Driving Force of Acoustic Streaming Due to Nonlinear Attenuation of Ultrasound;460
26.1.1;INTRODUCTION;460
26.1.2;DRIVING FORCE OF ACOUSTIC STREAMING;460
26.1.3;NONLINEAR PROPAGATION OF FINITE–AMPLITUDE SOUND;461
26.1.4;INFLUENCE ON STREAMING VELOCITY;461
26.1.5;CONCLUSION;462
26.1.6;REFERENCES;462
26.2;Chapter 104. X-Ray Diffraction in Crystals Excited by Surface Acoustic Waves;464
26.2.1;INTRODUCTION;464
26.2.2;EXPERIMENTAL PROCEDURES AND RESULTS;465
26.2.3;CONCLUSION;466
26.2.4;REFERENCES;466
26.3;Chapter 105. Radiative Transfer of Ultrasound;468
26.3.1;INTRODUCTION;468
26.3.2;THE ULTRASONIC RADIATIVE TRANSFER EQUATION;469
26.3.3;REFERENCES;470
26.4;Chapter 106. Laser Beam Frequency Shifting by Means of Hypersound;472
26.4.1;INTRODUCTION;472
26.4.2;GENERAL CONSIDERATION OF THE PROBLEM;472
26.4.3;CONCLUSION;474
26.4.4;REFERENCES;474
26.5;Chapter 107. Reflection of the evanescent plane wave on a plane interface;476
26.5.1;Introduction;476
26.5.2;I- Experimental apparatus;476
26.5.3;II- Generalised Snell's laws;477
26.5.4;Ill-Results and discussions;478
26.5.5;Conclusion;479
26.5.6;References;479
26.5.7;Acknowledgement;479
27;Part XX: Phsical acoustics: poster papers;480
27.1;Chapter 108. Ultrasonic Attenuation in Normal Valence Semi Conductors;480
27.1.1;INTRODUCTION;480
27.1.2;THEORY OF PRESENT EVALUATION;480
27.1.3;CONCLUSIONS;482
27.1.4;REFERENCES;483
27.2;Chapter 109. Relaxational Properties of Shear and Bulk Elastic Moduli of Viscous Liquids;484
27.2.1;INTRODUCTION;484
27.2.2;DISTRIBUTION OF RELAXATION TIMES IN THE THEORY OF VISCOELASTICITY;485
27.2.3;A COMPARISON WITH EXPERIMENT, THE BARLOW, ERGINSAV AND LAMB MODEL;486
27.2.4;ATTENUATION PROPERTIES OF VISCOUS LIQUIDS SUBJECTED TO BULK STRESSES;486
27.2.5;REFERENCES;487
27.3;Chapter 110. Ultrasonic Speed and Isentropic Compressibility of Asymmetric Liquid Ternary Mixtures under High Pressure: a Test for Equations of State and Associated Mixing Rules;488
27.3.1;INTRODUCTION;488
27.3.2;EXPERIMENTAL;488
27.3.3;RESULTS AND DISCUSSION;489
27.3.4;EXPERIMENTAL SPEEDS OF SOUND COMPARED WITH THE PREDICTIONS OF VARIOUS EQUATIONS OF STATE;489
27.3.5;REFERENCES;490
27.4;Chapter 111. THE COMPARATIVE STUDY OF THE APPEARANCE OF ACOUSTIC EMISSION (AE) SIGNALS;492
27.4.1;SCOPE OF RESEARCH BY AE METHOD;492
27.4.2;DESCRIPTORS OF AE SIGNALS;492
27.4.3;AE AND CONDUCTIVITY DURING STRENGTH TESTS OF CERAMICS;492
27.4.4;INVESTIGATING A HYDROGEN PEROXIDE DECOMPOSITION REACTION;494
27.4.5;ACKNOWLEDGEMENT;494
27.4.6;REFERENCES;494
27.5;Chapter 112. Experimental manifestation of the resonant interaction between two close elastic shells;496
27.5.1;INTRODUCTION;496
27.5.2;EXPERIMENTAL CONDITION;496
27.5.3;EXPERIMENTAL RESULTS;497
27.5.4;CONCLUSION;497
27.5.5;BIBLIOGRAPHY;497
27.6;Chapter 113. Resonance Interpretation with Surface Waves propagating on Cylindrical Shells Bounded by Hemispherical Endcaps;500
27.6.1;INTRODUCTION;500
27.6.2;NORMAL EXCITATION;500
27.6.3;AXIAL EXCITATION;501
27.6.4;CONCLUSION;501
27.6.5;REFERENCES;501
27.7;Chapter 114. Measurement of Elastic Plate Resonance Width;504
27.7.1;THEORETICAL APPROACH;504
27.7.2;EXPERIMENTAL CONFIGURATION;505
27.7.3;RESULTS AND ANALYSIS;505
27.7.4;REFERENCES;506
27.8;Chapter 115. Acoustic Anomalies of Ferromagnetic and Antiferromagnetic Invar Alloys;508
27.8.1;INTRODUCTION;508
27.8.2;EXPERIMENTAL AND RESULTS;509
27.8.3;DISCUSSION;510
27.8.4;REFERENCES;511
27.9;Chapter 116. Ultrasonic Study of Turbulence;512
27.9.1;INTRODUCTION;512
27.9.2;PRELIMINARIES;512
27.9.3;EXPERIMENTAL;513
27.9.4;DISCUSSION AND CONCLUSIONS;514
27.9.5;REFERENCES;514
27.10;Chapter 117. A Study on Directional Converter for Ultrasonic Longitudinal Mode Vibration by using a Hollow Cylinder Type Resonator;516
27.10.1;INTRODUCTION;516
27.10.2;DESIGN PROCEDURE;516
27.10.3;TRIAL FABRICATION AND EXPERIMENTAL RESULTS;517
27.10.4;CONCLUSION;518
27.10.5;REFERENCES;518
28;Part XXI: Particles/fields: oral papers;520
28.1;Chapter 118. Flocculation Processes in Colloidal Systems Studied by a Fast Wide-bandwidth Ultrasonic Technique;520
28.1.1;INTRODUCTION;520
28.1.2;MEASUREMENT TECHNIQUE;521
28.1.3;SCATTERING MODELS OF ACOUSTIC PROPAGATION;521
28.1.4;RESULTS;522
28.1.5;CONCLUSION;522
28.1.6;REFERENCES;522
28.2;Chapter 119. Ultrasound Enhanced Phase Partition of Cells;524
28.2.1;INTRODUCTION;524
28.2.2;MATERIALS AND METHODS;524
28.2.3;RESULTS;525
28.2.4;DISCUSSION;526
28.2.5;ACKNOWLEDGEMENTS;526
28.2.6;REFERENCES;526
28.3;Chapter 120. Frequency Dependence of the Acoustic Loss Distribution in Piezoceramic/Liquid Resonators;528
28.3.1;INTRODUCTION;528
28.3.2;ANALYSIS;529
28.3.3;RESULTS AND CONCLUSION;530
28.3.4;REFERENCES;530
28.4;Chapter 121. Aggregation and Separation of Hybridoma Cells by Ultrasonic Resonance Fields - Eifect on Viability, Growth Rate and Productivity;532
28.4.1;INTRODUCTION;532
28.4.2;METHODS AND APPARATUS;532
28.4.3;RESULTS;533
28.4.4;CONCLUSION;534
28.4.5;REFERENCES;534
28.5;Chapter 122. Trapping of Suspended Biological Particles by use of Ultrasonic Resonance Fields;536
28.5.1;INTRODUCTION;536
28.5.2;RESONATOR DESIGN AND EXPERIMENTAL SET-UP;536
28.5.3;MEASUREMENT OF SEPARATION EFFICIENCY AND CELL VIABILITY;537
28.5.4;SUMMARY AND CONCLUSION;537
28.5.5;ACKNOWLEDGEMENT;537
29;Part XXII: Particles/fields: poster paper;540
29.1;Chapter 123. Separation of Suspended Particles by use of the Inclined Resonator Concept;540
29.1.1;INTRODUCTION;540
29.1.2;EXPERIMENTAL SETUP;541
29.1.3;PROCESS PARAMETERS AND BASIC TESTING;541
29.1.4;SEPARATION EXPERIMENTS AND RESULTS;541
29.1.5;CONCLUSIONS;542
29.1.6;REFERENCES;542
30;Part XXII: Imaging: oral papers;544
30.1;Chapter 124. A New Hybrid, Real-Time Ultrasonic Imaging System;544
30.1.1;INTRODUCTION;544
30.1.2;BACKGROUND WORK;544
30.1.3;THE NEW DEVELOPMENT - APPROACH, METHODS AND TECHNIQUES;545
30.1.4;SYSTEM DESCRIPTION AND OPERATION;545
30.1.5;RESULTS;546
30.1.6;CONCLUSIONS;546
30.1.7;ACKNOWLEDGEMENT;546
30.1.8;REFERENCES;547
30.2;Chapter 125. A Parallel Processing Approach To Acoustic Tomography;548
30.2.1;INTRODUCTION;548
30.2.2;A GEOMETRIC RAY TRACER;548
30.2.3;ADAPTING ACOUSTIC TOMOGRAPHY TO A PARALLEL PROCESSING ENVIRONMENT;549
30.2.4;TOMOGRAPHIC IMAGE RECONSTRUCTION;549
30.2.5;RESULTS AND DISCUSSION;550
30.2.6;CONCLUSIONS;550
30.2.7;REFERENCES;551
30.3;Chapter 126. Laser-Induced Spallation of Surface Films Monitored with a 300 MHz Fiber-Optic Interferometer;552
30.3.1;INTRODUCTION;552
30.3.2;FIBER-OPTIC INTERFEROMETER;552
30.3.3;SPALLATION STUDIES;553
30.3.4;CONCLUSION;554
30.3.5;REFERENCES;554
30.4;Chapter 127. Ultrasonic Flux Imaging In Anisotropic Solids;556
30.4.1;INTRODUCTION;556
30.4.2;EXPERIMENTAL METHOD;557
30.4.3;THEORY OF ULTRASONIC FLUX IMAGING;557
30.4.4;REFERENCES;558
30.5;Chapter 128. Small size ultrasonic sources for time-of-flight diffraction tomography;560
30.5.1;INTRODUCTION;560
30.5.2;RESEARCH WORK OBJECTIVES AND MAIN NOVELTIES;560
30.5.3;THE TIME-OF-FLIGHT DIFFRACTION TOMOGRAPHY ALGORITHM;561
30.5.4;DESIGN OF A PROTOTYPE MASKING SYSTEM FOR HIGH EFFICIENCY IMMERSION PROBES;562
30.5.5;RESULTS OF EXPERIMENTAL IMAGES;562
30.5.6;CONCLUSION;562
30.5.7;REFERENCES;563
31;Part XXIII: Imaging: poster papers;564
31.1;Chapter 129. Definition of a New Measure Based on Co-occurrence Matrix for the Threshold Selection of Ultrasonic Images in the Nuclear Field;564
31.1.1;INTRODUCTION;564
31.1.2;SEGMENTATION ALGORITHM;564
31.1.3;APPLICATIONS;566
31.1.4;CONCLUSION;567
31.1.5;REFERENCES;567
31.2;Chapter 130. Evaluation of a Point-spread-function of Focusing Systems Using Spherical Reflector;568
31.2.1;INTRODUCTION;568
31.2.2;SIGNAL FORMATION IN FOCUSING SYSTEM WITH SPHERICAL REFLECTOR;568
31.2.3;EXPERIMENTAL RESULTS AND DISCUSSION;569
31.2.4;CONCLUSION;569
31.2.5;REFERENCES;569
31.3;Chapter 131. A BROADBAND IMAGING SYSTEM OF PULSED ACOUSTIC H ELDS USING AN HETERODYNE INTERFEROMETER;572
31.3.1;INTRODUCTION;572
31.3.2;BLOCK DIAGRAM OF THE IMAGING SYSTEM;572
31.3.3;ANALYSIS;573
31.3.4;EXPERIMENTAL RESULTS;573
31.3.5;CONCLUSION;574
31.3.6;ACKNOWLEDGMENTS;574
31.3.7;REFERENCES;574
32;Part XXIV: Non-linear: oral papers;576
32.1;Chapter 132. Multiple Bragg Imaging of Finite Amplitude Ultrasonic Waves;576
32.1.1;INTRODUCTION;576
32.1.2;THEORY;576
32.1.3;CONCLUSIONS;579
32.1.4;REFERENCES;579
32.2;Chapter 133. High-Frequency Ultrasonic Techniques;580
32.2.1;INTRODUCTION;580
32.2.2;ACOUSTIC TRANSDUCERS AT MICROWAVE FREQUENCIES;580
32.2.3;RF ELECTRONICS;581
32.2.4;ACOUSTIC MICROSCOPY AT 5 GHz;581
32.2.5;ULTRASONIC MEASUREMENTS OF THIN FILMS;581
32.2.6;CONCLUSION;582
32.2.7;REFERENCES;582
32.3;Chapter 134. Photoacoustic Transformation in Nonlinear Crystals With Central Symmetrical Paramagnetic Phase;584
32.3.1;INTRODUCTION;584
32.3.2;THEORETICAL MODEL;584
32.3.3;NUMERICAL ANALYSIS;586
32.3.4;CONCLUSION;587
32.3.5;REFERENCES;587
33;Part XXV: Non-linear: poster papers;588
33.1;Chapter 135. Nonlinear elasticity of HTSC ceramic YBaCuO;588
33.1.1;REFERENCES;590
33.2;Chapter 136. Experimental system for studying ultrasonic non-linear vibrations in metals;592
33.2.1;INTRODUCTION;592
33.2.2;EXPERIMENTAL SET-UP;592
33.2.3;EXPERIMENTAL RESULTS;594
33.2.4;CONCLUSION;594
33.2.5;REFERENCES;594
34;Part XXVI: Underwater: oral papers;596
34.1;Chapter 137. ULTRASONIC BEAM REFLECTION AND TRANSMISSION BY MODEL SEABEDS;596
34.1.1;INTRODUCTION;596
34.1.2;THEORETICAL BASIS;596
34.1.3;NUMERICAL TECHNIQUES;597
34.1.4;NUMERICAL RESULTS;598
34.1.5;CONCLUSIONS;599
34.1.6;REFERENCES;599
34.2;Chapter 138. Propagation of High Frequency Ultrasound Through Suspensions of Marine Sediments;600
34.2.1;INTRODUCTION;600
34.2.2;CHARACTERISTICS OF SUSPENDED SEDIMENT PARTICLES;601
34.2.3;EXPERIMENTAL METHODS FOR SUSPENDED SEDIMENT STUDIES;601
34.2.4;ACOUSTIC NONLINEARITY OF SUSPENDED SEDIMENTS;602
34.2.5;CONCLUSION AND FUTURE TRENDS IN SUSPENDED SEDIMENT STUDIES;604
34.2.6;REFERENCES;604
34.3;Chapter 139. BUBBLE-RELATED SOURCES OF OCEAN AMBIENT NOISE;606
34.3.1;INTRODUCTION;606
34.3.2;HIGH-FREQUENCY NOISE PRODUCTION MECHANISMS;607
34.3.3;INTERMEDIATE-FREQUENCY NOISE PRODUCTION MECHANISMS;608
34.3.4;LOW-FREQUENCY NOISE PRODUCTION MECHANISMS;610
34.3.5;CONCLUSION;611
34.3.6;ACKNOWLEDGEMENT;611
34.3.7;REFERENCES;611
34.4;Chapter 140. Contribution to Sea–Bottom Characterization from Stoneley–Scholte Waves Celerity Dispersion in Special Cases of Media Having Linear Sound Celerity Profiles;612
34.4.1;INTRODUCTION;612
34.4.2;DIRECT PROBLEM SOLUTION;612
34.4.3;INVERSE PROBLEM (NDE);613
34.4.4;CONCLUSION;614
34.4.5;REFERENCES;615
35;Part XXVII: Underwater: poster papers;616
35.1;Chapter 141. Ultrasonic Signals Backscattered from Inhomogeneities of Water Column in the Southern Baltic Sea;616
35.1.1;INTRODUCTION;616
35.1.2;EXPERIMENT;616
35.1.3;CONCLUSION;617
35.1.4;REFERENCES;618
35.2;Chapter 142. Sea Bottom Examinations by Backscattering of Ultrasonic Signals in the Southern Baltic Sea;620
35.2.1;METHODS OF MEASUREMENTS;620
35.2.2;METHODS OF PROCESSING;620
35.2.3;SOME RESULTS;621
35.2.4;ACKNOWLEGMENTS;622
35.2.5;REFERENCES;622
36;Part XXVIII: Medical: oral papers;624
36.1;Chapter 143. Interest of automated measurement of the diameter of the aorta for aortic blood flow monitoring during peroperative survey;624
36.1.1;INTRODUCTION;624
36.1.2;MATERIAL AND METHODOLOGY;624
36.1.3;RESULTS;625
36.1.4;CONCLUSIONS;627
36.1.5;REFERENCES;627
36.2;Chapter 144. Blood Flow Vector Mapping of Doppler Ultrasound Data;628
36.2.1;INTRODUCTION;628
36.2.2;METHOD OF RECONSTRUCTION;628
36.2.3;RESULTS;629
36.2.4;CONCLUSION;629
36.2.5;REFERENCES;630
36.3;Chapter 145. Endothelial Cell Damage Induced by High Energy Shock Waves;632
36.3.1;INTRODUCTION;632
36.3.2;MATERIALS AND METHODS;632
36.3.3;RESULTS;633
36.3.4;DISCUSSION;634
36.3.5;REFERENCES;635
36.4;Chapter 146. Shock Waves and Free Radicals: Cell Protection by Vitamin E in vitro and ex vivo;636
36.4.1;INTRODUCTION;636
36.4.2;MATERIAL & METHODS;637
36.4.3;RESULTS;637
36.4.4;CONCLUSIONS;638
36.4.5;REFERENCES;638
36.5;Chapter 147. Optical Diagnostics of Cavitation and Ultrasound in Materials;640
36.5.1;INTRODUCTION;640
36.5.2;CONCLUSIONS;642
36.5.3;REFERENCES;642
36.6;Chapter 148. Perception of Ultrasounds via Non-linear effect of Tympanic Membrane;644
36.6.1;INTRODUCTION;644
36.6.2;EXPERIMENTS;645
36.6.3;DISCUSSION;646
36.6.4;CONCLUSIONS;646
36.6.5;REFERENCES;646
36.7;Chapter 149. AT-cut Quartz Crystal Biosensor for Blood Assay;648
36.7.1;INTRODUCTION;648
36.7.2;THEORY;648
36.7.3;EXPERIMENTAL SET UP;649
36.7.4;RESULTS AND DISCUSSION;650
36.7.5;CONCLUSION;651
36.7.6;REFERENCES;651
37;Part XXIX: Medical: poster papers;652
37.1;Chapter 150. Lithotripsy : Energy Aspiration of the Matrix in Renal Stones;652
37.1.1;INTRODUCTION;652
37.1.2;MATERIALS AND METHODS;652
37.1.3;DISCUSSION;653
37.1.4;REFERENCES;654
37.2;Chapter 151. Perceived Tone evoked by Ultrasonic Complex Tone;656
37.2.1;INTRODUCTION;656
37.2.2;METHOD;656
37.2.3;RESULTS;657
37.2.4;DISCUSSION;658
37.2.5;CONCLUSIONS;658
37.2.6;REFERENCES;658
37.3;Chapter 152. Effect of Ultrasound to Timbre;660
37.3.1;INTRODUCTION;660
37.3.2;EXPERIMENTS;660
37.3.3;CONCLUSIONS;662
37.3.4;REFERENCES;662
37.4;Chapter 153. The Effects of High Energy Shock Waves on Cell Membranes and Mitochondria;664
37.4.1;INTRODUCTION;664
37.4.2;MATERIALS AND METHODS;664
37.4.3;RESULTS;665
37.4.4;DISCUSSION;665
37.4.5;REFERENCES;666
37.5;Chapter 154. The Combined Effects of High Energy Shock Waves and Cytostatic Drugs or Cytokines on Human Bladder Cancer Cells;668
37.5.1;INTRODUCTION;668
37.5.2;MATERIALS AND METHODS;668
37.5.3;RESULTS;669
37.5.4;DISCUSSION;670
37.5.5;REFERENCES;671
37.6;Chapter 155. Characterization of biological solutions from harmonic and anharmonic properties;672
37.6.1;INTRODUCTION;672
37.6.2;THEORIE;672
37.6.3;MEASUREMENT AND ANALYSE;673
37.6.4;DISCUSSION;674
37.6.5;CONCLUSION;675
37.6.6;REFERENCES;675
37.7;Chapter 156. An ultrasound pulse-echo technique for the thickness measurement of thin membranes;676
37.7.1;THEORY;676
37.7.2;NOISE;677
37.7.3;EXPERIMENTAL RESULTS;677
37.7.4;DISCUSSION;678
37.7.5;CONCLUSIONS;678
37.7.6;REFERENCES;678
38;Part XXX: Industrial applications: oral papers;680
38.1;Chapter 157. Frequency Range Extension Below 100 kHz and Above 50 MHz for CW Ultrasonic Absorption and Velocity Measurements in Liquids with Resonator Cells;680
38.1.1;INTRODUCTION;680
38.1.2;LOW FREQUENCY RANGE f < 500 KHZ;680
38.1.3;MEDIUM AND HIGH FREQUENCY RANGE f > 30 MHZ;681
38.1.4;ASPECTS OF CELL DESIGN AND MEASUREMENT TECHNIQUE;682
38.1.5;CONCLUSION;682
38.1.6;REFERENCES;682
38.2;Chapter 158. Ultrasonic International 93 Acoustic and Electromagnetic Barkhausen Emission as a Method for Characterising Material Condition;684
38.2.1;1. SOURCES OF BARKHAUSEN EMISSION;684
38.2.2;2. DETECTION OF ABE and EBE;685
38.2.3;3. MODELLING OF BARKHAUSEN EMISSION AS STOCHASTIC NOISE;685
38.2.4;4. EXCITATION AND DISPLAY OF BARKHAUSEN EMISSION;686
38.2.5;5. ACOUSTIC BARKHAUSEN EMISSION FROM POLYCRYSTALLINE NICKEL;686
38.2.6;6. APPLICATION OF BARKHAUSEN EMISSION FOR STRESS AND CASE-DEPTH MEASUREMENT;686
38.2.7;REFERENCES;687
38.2.8;FIGURES;687
38.3;Chapter 159. Advances in air-borne ultrasonic sensors;688
38.3.1;INTRODUCTION;688
38.3.2;CAPACITIVE TRANSDUCERS;688
38.3.3;ARRAYS;689
38.3.4;SIGNAL PROCESSING;690
38.3.5;APPLICATIONS;690
38.3.6;FURTHER DEVELOPMENTS;690
38.3.7;REFERENCES;691
38.4;Chapter 160. Analytical Modelling Of An Ultrasonic Motor;692
38.4.1;INTRODUCTION;692
38.4.2;ULTRASONIC MOTOR STRUCTURE;692
38.4.3;ANALYTICAL MODELLING;692
38.4.4;EXPERIMENTAL RESULTS;694
38.4.5;CONCLUSION;694
38.4.6;REFERENCES;694
38.5;Chapter 161. Micromachined Capacitance Transducers for Air–Borne Ultrasonics;696
38.5.1;INTRODUCTION;696
38.5.2;THEORY;696
38.5.3;EXPERIMENTAL and RESULTS;697
38.5.4;CONCLUSIONS;698
38.5.5;REFERENCES;698
38.6;Chapter 162. An Ultrasonic Atomizer using Squeeze Film;700
38.6.1;INTRODUCTION;700
38.6.2;PRINCIPLE AND SET UP;700
38.6.3;THEORETICAL INVESTIGATION;701
38.6.4;EXPERIMENTAL INVESTIGATION;702
38.6.5;ATOMIZATION PERFORMANCE;702
38.6.6;CONCLUSIONS;703
38.6.7;REFERENCES;703
39;Part XXXI: Industrial applications: poster papers;704
39.1;Chapter 163. Ultrasonic Butt Welding of Large Various Metal Plate Specimens;704
39.1.1;INTRODUCTION;704
39.1.2;ULTRASONIC BUTT WELDING SYSTEM AND SPECIMENS;704
39.1.3;WELDING CHARACTERISTICS OF THE SAME AND DIFFERENT METAL PLATES;705
39.1.4;CONCLUSION;706
39.2;Chapter 164. Ultrasonic Wire Bonding Using a High Frequency Complex Vibration Welding System;708
39.2.1;INTRODUCTION;708
39.2.2;ULTRASONIC WIRE BONDING SYSTEMS AND WELDING SPECIMENS;708
39.2.3;WELDING CHARACTERISTICS OF 60, 90 and 120 kHz COMPLEX VIBRATION WIRE BONDING SYSTEMS;709
39.2.4;CONCLUSION;710
39.3;Chapter 165. Ultrasonic Bending of Thin Metal Plates Using a Vibration Punch and a Vibration Die;712
39.3.1;INTRODUCTION;712
39.3.2;ULTRASONIC VIBRATION BENDING SYSTEM AND BENDING PLATE SPECIMENS;712
39.3.3;CHARACTERISTICS OF ULTRASONIC VIBRATION BENDING SYSTEM;713
39.3.4;CONCLUSION;714
39.4;Chapter 166. Characteristics of Tortional Vibrators;716
39.4.1;INTRODUCTION;716
39.4.2;ACOUSTIC CHARACTERISTICS OF TORTIONAL VIBRATORS;717
39.4.3;METHODS OF MEASUREMENT;718
39.4.4;RESULTS OF MEASUREMENT;718
39.4.5;CONCLUSION;718
39.5;Chapter 167. Ultrasonic pressing of plastic – film capacitor;720
39.5.1;INTRODUCTION;720
39.5.2;ULTRASONIC PRESS FORMING EQUIPMENT;720
39.5.3;FORM OF PRESSED MATERIALS;721
39.5.4;MEASUREMENT METHODS AND RESULTS;721
39.5.5;CONSIDERATIONS;721
39.5.6;CONCLUSIONS;722
39.5.7;REFERENCES;722
39.6;Chapter 168. Cavitation Effects in Ultrasonic Cleaning of Textiles;724
39.6.1;INTRODUCTION;724
39.6.2;EXPERIMENTAL;724
39.6.3;CONCLUSIONS;725
39.6.4;REFERENCES;726
39.6.5;ACKNOWLEDGMENTS;726
39.7;Chapter 169. Design of Ultrasonically Assisted Radial Dies by Validated Finite Element Models;728
39.7.1;INTRODUCTION;728
39.7.2;DIE VIBRATION CHARACTERISTICS;728
39.7.3;DIE REDESIGN BY STRUCTURAL MODIFICATION;730
39.7.4;CONCLUSION;730
39.7.5;REFERENCES;731
40;Part XXXII: Sonochemistry: oral papers;732
40.1;Chapter 170. New Aspect of Cavitation: Relation Between Sonoluminescence and Sonochemistry;732
40.1.1;INTRODUCTION;732
40.1.2;EXPERIMENTAL SET-UP;732
40.1.3;RESULTS AND DISCUSSION;733
40.1.4;CONCLUSION;734
40.1.5;REFERENCES;734
40.2;Chapter 171. Measurement of Liquid-solid Mass Transfer in Ultrasonic Reactor;736
40.2.1;INTRODUCTION;736
40.2.2;EXPERIMENTAL;737
40.2.3;RESULTS-DISCUSSION;738
40.2.4;CONCLUSION;739
40.2.5;REFERENCES;739
40.3;Chapter 172. Acoustic Signature Estimation Of The Cavitation Noise;740
40.3.1;INTRODUCTION;740
40.3.2;STUDY OF THE SPECTRAL EVOLUTION AS A FUNCTION OF GAIN;740
40.3.3;TIME-FREQUENCY ANALYSIS;741
40.3.4;CONCLUSION;742
40.4;Chapter 173. Dynamic Characterization Of High Frequency Ultrasonic Cavitation;744
40.4.1;INTRODUCTION;744
40.4.2;IMPULSE DYNAMIC CHARACTERIZATION;744
40.4.3;EXPERIMENTAL SET-UP DESCRIPTION;745
40.4.4;RELAXATION CONSTANT STUDY;745
40.4.5;CONCLUSION;746
41;Part XXXIII: Sonochemistry: poster papers;748
41.1;Chapter 174. EXPERIMENTAL CORRELATION BETWEEN CAVITATION NOISE SIGNATURES AND CHEMICAL REACTIVITY IN HOMOGENEOUS SONOCHEMISTRY;748
41.1.1;INTRODUCTION;748
41.1.2;EQUIPMENT AND INSTRUMENTATION;748
41.1.3;EXPERIMENTAL RESULTS;749
41.1.4;DISCUSSION;749
41.1.5;REFERENCES;750
41.2;Chapter 175. Building-up Time of Standing Waves in Composite Piezoelectric Resonators;752
41.2.1;INTRODUCTION;752
41.2.2;MATHEMATICAL DESCRIPTION OF THE TRANSIENT RESPONSE;752
41.2.3;EXPERIMENTAL SETUP;754
41.2.4;RESULTS;754
41.2.5;REFERENCES;754
41.3;Chapter 176. Conditions for Ultrasonic-Induced Cavitation in Water;756
41.3.1;INTRODUCTION;756
41.3.2;EQUATIONS AND NUMERICAL ANALYSIS;756
41.3.3;EXPERIMENTAL;757
41.3.4;DISCUSSION AND CONCLUSIONS;758
41.3.5;REFERENCES;758
41.3.6;ACKNOWLEDGEMENTS;758
41.4;Chapter 177. Thermosensitive Probe Based Technique of Local Investigation of ultrasonic reactors;760
41.4.1;INTRODUCTION;760
41.4.2;EQUIPMENT;760
41.4.3;RESULTS AND DISCUSSION;761
41.4.4;CONCLUSION;762
41.4.5;REFERENCES;762
41.5;Chapter 178. Study of Chemical Reactions under the Influence of Ultrasound;764
41.5.1;INTRODUCTION;764
41.5.2;EXPERIMENTS AND RESULTS;764
41.5.3;CONCLUSION;767
41.5.4;REFERENCES;767
42;Part XXXIV: Guided waves: oral papers;768
42.1;Chapter 179. Ultrasonic Velocity and Attenuation in Hardened Steel;768
42.1.1;INTRODUCTION;768
42.1.2;EXPERIMENTS;768
42.1.3;INVERSION ALGORITHM;769
42.1.4;CONCLUSION;769
42.1.5;REFERENCES;770
42.2;Chapter 180. Peculiarities of Stoneley Wave Generation on Division Boundaries between Different Structures;772
42.2.1;FORMULATION OF THE DIFFRACTION PROBLEM;772
42.2.2;THEORETICAL DEVELOPMENT;772
42.2.3;NUMERICAL RESULTS;773
42.2.4;REFERENCES;774
42.3;Chapter 181. ACOUSTIC BEAM REFLECTION FROM CYLINDRICAL FLUID-LOADED ELASTIC STRUCTURES;776
42.3.1;THEORETICAL SUMMARY;776
42.3.2;EXPERIMENTAL METHOD;777
42.3.3;RESULTS AND DISCUSSION;777
42.3.4;REFERENCES;779
43;Part XXXV: Guided waves: poster papers;780
43.1;Chapter 182. A combined transmission line matrix (TLM) and boundary element method (BEM) modelling of ultrasonic propagation in air;780
43.1.1;INTRODUCTION;780
43.1.2;THE TLM MODEL;780
43.1.3;VERIFICATION OF THE TL M MODEL;781
43.1.4;EXTENSION OF THE MODEL USING BEM;781
43.1.5;COMPARISON BETWEEN EXPERIMENTAL AND MODELLED RESULTS;782
43.1.6;APPLICATIONS AND FURTHER DEVELOPMENTS;782
43.1.7;REFERENCES;782
44;Part XXXVI: Neural works: oral papers;784
44.1;Chapter 183. Automatic Defects Classification System Using Spectral Analysis and Neural Networks;784
44.1.1;INTRODUCTION;784
44.1.2;EXPERIMENTAL METHOD;784
44.1.3;BACK-PROPAGATION TRAINING ALGORITHM;785
44.1.4;CONCLUSION;786
44.1.5;REFERENCES;786
44.2;Chapter 184. An Automatic 3-D Object Identification System Combining Ultrasonic Imaging with a Probability Competition Neural Network;788
44.2.1;INTRODUCTION;788
44.2.2;3-D ACOUSTICAL IMAGING;788
44.2.3;A PROBABILITY COMPETITION NEURAL NETWORK;789
44.2.4;RECOGNITION OF 3-D IMAGES;790
44.2.5;EXPERIMENTAL RESULTS;791
44.2.6;CONCLUSION;791
44.2.7;REFERENCES;791
44.3;Chapter 185. Application of a neural network to forecasting of a chaotic acoustic emission signal;792
44.3.1;THEORETICAL FUNDAMENTALS;792
44.3.2;EXPERIMENTS;794
44.3.3;REFERENCES;794
44.4;Chapter 186. Artificial Neural Network Processing of Lamb Wave Data for Adhesive Bond Characterisation;796
44.4.1;INTRODUCTION;796
44.4.2;TRANSDUCER SYSTEMS;797
44.4.3;TRANSMIT-RECEIVE SYSTEM;797
44.4.4;SIGNAL PROCESSING;797
44.4.5;RESULTS;798
44.4.6;DISCUSSION AND CONCLUSION;798
44.4.7;ACKNOWLEDGEMENTS;798
44.4.8;REFERENCES;799
45;Part XXXVII: Neural works: poster papers;800
45.1;Chapter 187. Applying Neural Networks to Ultrasonic Tomographic Inspection of Composite Materials;800
45.1.1;INTRODUCTION;800
45.1.2;EXPERIMENTAL APPARATUS;800
45.1.3;DATA PRE-PROCESSING;801
45.1.4;NEURAL NETWORKS;801
45.1.5;RESULTS;802
45.1.6;CONCLUSIONS;802
45.1.7;REFERENCES;802
46;Part XXXVIII: Lasers: oral papers;804
46.1;Chapter 188. Sectorial Beam Scanning in Solids by a Laser Ultrasonic Source Array;804
46.1.1;INTRODUCTION;804
46.1.2;ANALYSIS;804
46.1.3;EXPERIMENTAL SET UP;805
46.1.4;EXPERIMENTAL RESULTS;805
46.1.5;CONCLUSION;806
46.1.6;REFERENCES;806
46.2;Chapter 189. Optoacoustic Energy Conversion Efficiency during Laser Ablation;808
46.2.1;INTRODUCTION;808
46.2.2;EXPERIMENTS;808
46.2.3;DISCUSSION;809
46.2.4;CONCLUSION;810
46.2.5;REFERENCES;810
46.3;Chapter 190. Investigation of Orthogonal Two-Dimensional Acoustooptic Interaction in Anisotropic Media;812
46.3.1;INTRODUCTION;812
46.3.2;OPERATION PRINCIPLES AND REQUIREMENTS;812
46.3.3;PROBLEMS AND DESIGN CONSIDERATIONS;813
46.3.4;EXPERIMENTAL RESULTS;814
46.3.5;REFERENCES;814
46.4;Chapter 191. Ultrasonic Monitoring of Excimer Laser Beam Focussing;816
46.4.1;INTRODUCTION;816
46.4.2;EXPERIMENTAL;816
46.4.3;RESULTS;817
46.4.4;REFERENCES;818
47;Part XXXIX: Lasers: poster papers;820
47.1;Chapter 192. Far-field Broad - band Transducer Calibration by Means of Laser Ultrasound;820
47.1.1;INTRODUCTION;820
47.1.2;PRINCIPLES OF TRANSDUCER CALIBRATION WITH LIAS;820
47.1.3;CALIBRATION AGAINST STANDARD LOW-FREQUENtY HYDROPHONE;821
47.1.4;EXPERIMENTAL ARRANGEMENT AND RESULTS;821
47.1.5;CONCLUSION;822
47.1.6;ACKNOWLEDGEMENT;822
47.1.7;REFERENCES;822
47.2;Chapter 193. Laser-Excited Acoustic Pulses for Remote Material Inspection;824
47.2.1;INTRODUCTION;824
47.2.2;EXPERIMENTAL SETUP;824
47.2.3;CONCLUSION;826
47.2.4;REFERENCES;826
47.3;Chapter 194. Selective excitation of bulk and surface acoustic waves by rapid scanning of a laser interference fringe;828
47.3.1;INTRODUCTION;828
47.3.2;PRINCIPLE;828
47.3.3;EXPERIMENTAL VERIFICATION;829
47.3.4;DISCUSSION;829
47.3.5;CONCLUSION;830
47.3.6;REFERENCES;830
47.4;Chapter 195. Laser–Ultrasonic in Isotropic Polymers: Generation and Propagation;832
47.4.1;INTRODUCTION;832
47.4.2;PRINCIPLES AND METHOD OF MEASUREMENTS;832
47.4.3;RESULTS;833
47.4.4;CONCLUSIONS;833
47.4.5;REFERENCES;833
48;Part XI: Materials characterization: poster papers;836
48.1;Chapter 196. Mode Coupling in Liquid Bilayers;836
48.1.1;INTRODUCTION;836
48.1.2;THE COUPLING CONSTANT OF TWO COUPLED OSCILLATOR;836
48.1.3;THE COUPLING CONSTANT OF A LIQUID BILAYER;837
48.1.4;REFERENCES;838
48.2;Chapter 197. Mode Coupling in Al/polymer Bilayers;840
48.2.1;ANALYSIS OF THE DISPERSION CURVES;840
48.2.2;EXPERIMENTAL DATA;841
48.2.3;MODE COUPLING IN THE ALUMINUM/POLYMER BILAYERS;842
48.2.4;REFERENCES;842
48.3;Chapter 198. A Method for the Compensation of the Effects of Surface Cloth Impressions on Polar Backscatter Applied to Porous Epoxy and Biaxial Graphite/Epoxy Composites;844
48.3.1;INTRODUCTION;844
48.3.2;EXPERIMENTAL METHODS;844
48.3.3;RESULTS AND DISCUSSION;845
48.3.4;REFERENCES;845
48.3.5;ACKNOWLEDGMENTS;847
48.4;Chapter 199. The Newton-Raphson and Conjuguate Gradients algorithms for the acoustic characterization of thin films;848
48.4.1;Construction of the theoretical model;848
48.4.2;Measurement of the transmission coefficient T and identification of acoustical parameters of films;849
48.4.3;References;850
48.5;Chapter 200. Characterization of Powder Metallic Materials by Spectral Domain Based Ultrasonic Methods;852
48.5.1;INTRODUCTION;852
48.5.2;SIGNAL PROCESSING MODEL;852
48.5.3;SIGNAL PROCESSING;854
48.5.4;SIMULATIONS AND MEASUREMENTS;854
48.5.5;CONCLUDING REMARKS;855
48.5.6;REFERENCES;855
48.6;Chapter 201. Defect Characterisation in Carbon/Epoxy Plates via Signal Processing and Pattern Recognition Analysis of Ultrasonic A-Scan Signals;856
48.6.1;INTRODUCTION;856
48.6.2;EXPERIMENTAL PROCEDURE;856
48.6.3;SIGNAL PROCESSING AND PATTERN RECOGNITION [ 3 , 4 , 5 , 6 , 7 ];857
48.6.4;RESULTS;858
48.6.5;CONCLUSION;859
48.6.6;REFERENCES;859
48.7;Chapter 202. PHOTOACOUSTIC RESONANCE ABSORPTION SPECTRA OF LANGMUIR–BLODGETT FILMS;860
48.7.1;I. INTRODUCTION;860
48.7.2;II. EXPERIMENT;860
48.7.3;III. THEORY;863
48.7.4;IV. DISCUSSIONS;864
48.7.5;ACKNOWLEDGEMENT;865
48.7.6;REFERENCES;865
48.8;Chapter 203. Biot's Slow Wave in Porous Materials II: Resonant Scattering Phenomena;866
48.8.1;INTRODUCTION;866
48.8.2;EXPERIMENTAL METHOD;867
48.8.3;EXPERIMENTAL RESULTS;867
48.8.4;CONCLUSIONS;868
48.8.5;ACKNOWLEDGEMENTS;868
48.8.6;REFERENCES;868
49;Author Index;870
50;Keyword Index;873



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.