E-Book, Englisch, 880 Seiten, Web PDF
Stuart Ultrasonics International 93
1. Auflage 2013
ISBN: 978-1-4831-8393-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Conference Proceedings
E-Book, Englisch, 880 Seiten, Web PDF
ISBN: 978-1-4831-8393-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Dr. Sam Stuart is a physiotherapist and a research Fellow within the Balance Disorders Laboratory, OHSU. His work focuses on vision, cognition and gait in neurological disorders, examining how technology-based interventions influence these factors. He has published extensively in world leading clinical and engineering journals focusing on a broad range of activities such as real-world data analytics, algorithm development for wearable technology and provided expert opinion on technology for concussion assessment for robust player management. He is currently a guest editor for special issues (sports medicine and transcranial direct current stimulation for motor rehabilitation) within Physiological Measurement and Journal of NeuroEngineering and Rehabilitation, respectively.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Ultrasonics International 93;4
3;Copyright Page;5
4;Table of Contents ;6
5;Organizing Panel;18
6;Exhibition;19
7;Foreword;20
8;Part I: Plenary papers;22
8.1;Chapter 1. Colour Doppler Imaging and its Application in Diagnosis;22
8.1.1;INTRODUCTION;22
8.1.2;BLOOD FLOW MEASUREMENT;22
8.1.3;PHASE DETECTION AND AUTOCORRELATION TECHNIQUE;23
8.1.4;BLOOD FLOW DISPLAY;24
8.1.5;CLINICAL TESTS;25
8.1.6;CONCLUSION;25
8.1.7;REFERENCES;25
9;Part II: Invited papers;28
9.1;Chapter 2. Waves in Anisotropic Media;28
9.1.1;I. INTRODUCTION;28
9.1.2;II. DYNAMICAL GREEN'S FUNCTIONS;29
9.1.3;III· COMPARISON WITH EXPERIMENT;31
9.1.4;IV. REFERENCES;33
9.2;Chapter 3. Exposure measurements in extracorporeal shock wave lithotripsy;34
9.2.1;INTRODUCTION;34
9.2.2;IN VIVO MEASUREMENTS;36
9.2.3;CONCLUSIONS;37
9.2.4;References;38
9.3;Chapter 4. Sonochemistry, from Organic Synthesis to Tribochemistry;40
9.3.1;INTRODUCTION;40
9.3.2;SONOCHEMICAL REACTIONS USING NON METALS;40
9.3.3;HETEROGENEOUS SONOCHEMISTRY WITH METALS;41
9.3.4;MECHANISM OF THE METAL ACTIVATION;41
9.3.5;ELECTRON TRANFERS IN SONOCHEMISTRY;42
9.3.6;CONCLUSION;42
9.3.7;REFERENCES;42
9.4;Chapter 5. Ultrasonic Characterization of Interfaces;46
9.4.1;INTRODUCTION;46
9.4.2;MODELING OF IMPERFECT INTERFACE BETWEEN TWO SOLIDS;47
9.4.3;ULTRASONIC CHARACTERIZATION OF INTERFACIAL DEGRADATION IN ADHESIVE JOINTS;51
9.4.4;FIBER-MATRIX INTERFACE CHARACTERIZATION IN COMPOSITES;53
9.4.5;REFERENCES;56
10;Part III: Acoustic microscopy: oral papers;62
10.1;Chapter 6. Amplitude and Phase Variation of Surface Acoustic Wave Field in the Nanometer Level Measured with a Scanning Tunneling Microscope;62
10.1.1;INTRODUCTION;62
10.1.2;EXPERIMENT;63
10.1.3;DISCUSSION;63
10.1.4;REFERENCES;64
10.2;Chapter 7. Measurement of dispersion relations in acoustic velocities for the thin film on an anisotropic substrate using acoustic microscope;66
10.2.1;INTRODUCTION;66
10.2.2;EXPERIMENTAL SETUP;66
10.2.3;RESULTS;67
10.2.4;CONCLUSION;68
10.2.5;REFERENCES;68
10.3;Chapter 8. Quantitative Evaluation of 36°YX-LiTaO3 Wafers by LFB Acoustic Microscopy;70
10.3.1;INTRODUCTION;70
10.3.2;THEORETICAL CONSIDERATION;70
10.3.3;EXPERIMENTS CONDUCTED;71
10.3.4;SUMMARY;72
10.3.5;REFERENCES;72
10.4;Chapter 9. Scanning Acoustic Microscopy for Quantitative Analysis of Superplastic Forming Diffusion Bonding of Titanium Aerospace Components;74
10.4.1;INTRODUCTION;74
10.4.2;THE DOMAIN OF APPLICATION;74
10.4.3;THE USE OF HIGH FREQUENCY ULTRASOUND;74
10.4.4;THE RESULTS;75
10.4.5;CONCLUSION;76
10.4.6;REFERENCES;76
11;Part IV: Acousticmicroscopy: poster papers;78
11.1;Chapter 10. Acoustic Microscopy for Fatigue Damage;78
11.1.1;INTRODUCTION;78
11.1.2;EXPERIMENTAL;78
11.1.3;RESULTS;79
11.1.4;DISCUSSION;79
11.1.5;CONCLUSIONS;80
11.1.6;REFERENCES;80
11.1.7;ACKNOWLEDGMENT;81
11.2;Chapter 11. Application of the V(z) curves to determination elastic properties of spherical objects;82
11.2.1;INTRODUCTION;82
11.2.2;THEORY;82
11.2.3;EXPERIMENTAL RESULTS;83
11.2.4;CONCLUSION;84
11.2.5;REFERENCES;84
11.3;Chapter 12. The Effect of "Spherical Particle Size Reduction" in Imaging of Species by the Reflection Acoustic Microscope;86
11.3.1;INTRODUCTION;86
11.3.2;THEORY;86
11.3.3;RESULTS;87
11.3.4;CONCLUSION;88
11.3.5;REFERENCES;88
12;Part V: Acousto-optics: oral papers;90
12.1;Chapter 13. Higher Order Bragg Diffraction of Light by Ultrasound : Theory and Experiment;90
12.1.1;INTRODUCTION;90
12.1.2;THEORY;90
12.1.3;EXPERIMENT;91
12.1.4;RESULTS AND CONCLUSION;92
12.1.5;ACKNOWLEDGEMENT;92
12.1.6;REFERENCES;92
12.2;Chapter 14. ACOUSTO-OPTIC MODULATOR USING A PIEZOELECTRIC FILM OVER GaAs/AIGaAs MQW STRUCTURE;94
12.2.1;INTRODUCTION;94
12.2.2;ABSORPTION COEFFICIENT OF MQW IN ACOUSTO-OPTIC MODULATORS;94
12.2.3;SAW INDUCED ELECTRIC FIELD IN THE MQW STRUCTURE;95
12.2.4;CONCLUSION;96
12.2.5;REFERENCES;96
12.3;Chapter 15. Acousto-Optic Measurement of Pressure Profiles in Ultrasonic Fields;98
12.3.1;INTRODUCTION;98
12.3.2;THEORETICAL CONSIDERATIONS;98
12.3.3;EXPERIMENT;99
12.3.4;ANALYSIS;99
12.3.5;RESULTS AND CONCLUSIONS;100
12.3.6;ACKNOWLEDGEMENTS;100
12.3.7;REFERENCES;100
12.4;Chapter 16. Super High Frequency (10 GHz) Acousto-Optics. The Peculiarity of Devices Design;102
12.4.1;INTRODUCTION;102
12.4.2;THE MULTI ELEMENT TRANSDUCERS FOR ACOUSTO-OPTICS;103
12.4.3;THE THEORETICAL ASPECTS;103
12.4.4;THE TECHNICAL ASPECTS;104
12.4.5;THE EXPERIMENTAL RESULTS;104
12.4.6;CONCLUSION;105
12.4.7;REFERENCES;105
12.5;Chapter 17. Broadband SAW Phase–Weighted Chirp Transducers for Integrated Acoustooptic Scanners;106
12.5.1;INTRODUCTION;106
12.5.2;TRANSDUCER DESIGN;106
12.5.3;FABRICATION AND EXPERIMENTAL RESULTS;107
12.5.4;CONCLUSION;108
12.5.5;ACKNOWLEDGEMENTS;109
12.5.6;REFERENCES;109
12.6;Chapter 18. Bichromatic tunable acoustooptic separator;110
12.6.1;THEORY;110
12.6.2;EXPERIMENTAL VALIDATION.;111
12.6.3;REFERENCES;113
12.7;Chapter 19. Resonant Acousto-optical Properties of GaAs and InP and Application to Device Improvement;114
12.7.1;INTRODUCTION;114
12.7.2;RESONANCE ACOUSTO-OPTICAL MEASUREMENTS;114
12.7.3;DISCUSSION;115
12.7.4;REFERENCES;116
12.8;Chapter 20. DIFFRACTION PHENOMENA AFFECTING THE PROPERTIES OF THE FIBREOPTIC SENSOR SYSTEM;118
12.8.1;INTRODUCTION;118
12.8.2;SIMPLIFIED MODEL OF THE SENSOR CHARACTERISTICS;118
12.8.3;EXPERIMENTAL ASSESSMENT;120
12.8.4;ACKNOLEDGEMENTS;121
12.8.5;REFERENCES;121
13;Part VI: Acousto-optics: posterpa pers;122
13.1;Chapter 21. Computative Investigation of the Planar Acoustooptic Deflector;122
13.1.1;INTRODUCTION;122
13.1.2;PERFORMANCE OF SAW TRANSDUCERS AND THE AO INTERACTION;122
13.1.3;AIM OF THE PROGRAM PACKAGE;123
13.1.4;CONCLUSIONS;124
13.1.5;THE MODIFIED STRUCTURE;124
13.1.6;REFERENCES;124
13.2;Chapter 22. A Dynamic-Access-Time Acousto-Optic Correlator for GPS Doppler Resolving ;126
13.2.1;INTRODUCTION;126
13.2.2;THE GPS SIGNAL-ACQUISITION PRINCIPLE;126
13.2.3;THE DYNAMIC-ACCESS-TIME ACOUSTO-OPTIC PROCESSOR;127
13.2.4;THE DOPPLER EFFECT;127
13.2.5;THE ACQUISITION SYSTEM;128
13.2.6;CONCLUSION - PERSPECTIVES;128
13.2.7;REFERENCES;128
13.3;Chapter 23. Peculiarities of Acoustooptic Interaction in a Nonhomogeneous Acoustic Field;130
13.3.1;INTRODUCTION;130
13.3.2;CHARACTERISTICS OF LIGHT DIFFRACTION BY TWO ACOUSTIC BEAMS;131
13.3.3;SUMMARY;131
13.3.4;CONCLUSION;132
13.3.5;REFERENCES;132
13.4;Chapter 24. Optoacoustic Measurement of Ultrasound Velocity in a Solidifying Polymer;134
13.4.1;INTRODUCTION;134
13.4.2;EXPERIMENTS AND RESULTS;135
13.4.3;CONCLUSION;135
13.4.4;REFERENCES;136
14;Part VII: Transducers: oral papers;138
14.1;Chapter 25. Performance of Multi-layer PZT Transducer Arrays;138
14.1.1;I. INTRODUCTION;138
14.1.2;II. METHODS;139
14.1.3;III. RESULTS;140
14.1.4;IV. DISCUSSION;141
14.1.5;REFERENCES;141
14.2;Chapter 26. 1-3 piezo-composite material: 3D modelling and experimental results;142
14.2.1;INTRODUCTION;142
14.2.2;NUMERICAL AND EXPERIMENTAL PROCEDURES;143
14.2.3;RESULTS AND DISCUSSION;143
14.2.4;CONCLUSION;144
14.2.5;REFERENCES;144
14.3;Chapter 27. Vibrational Modes of Two-Dimensional Periodic and Aperiodic Composite Piezoelectric Plates;146
14.3.1;INTRODUCTION;146
14.3.2;2D PERIODIC COMPOSITE;146
14.3.3;SIERPINSKI CARPET COMPOSITE;147
14.3.4;CONCLUSION;147
14.3.5;REFERENCES;147
14.4;Chapter 28. Three Dimensional Model For The Mode Analysis of a Loaded Piezoceramic Plate;150
14.4.1;INTRODUCTION;150
14.4.2;ANALYTICAL MODELLING;150
14.4.3;EXPERIMENTAL RESULTS;151
14.4.4;CONCLUSION;152
14.4.5;REFERENCES;152
14.5;Chapter 29. Acoustic transducers based on the periodic domain structure in lead germanate;154
14.5.1;THE PRINCIPLE OF DOMAIN ULTRASONIC TRANSDUCER;154
14.5.2;SOME DEVICES USING DAT;155
14.5.3;THE PERSPECTIVES OF THE DAT USING;156
14.5.4;REFERENCES;157
14.6;Chapter 30. Gaussian-Beam Expansion For Focused Transducers;158
14.6.1;INTRODUCTION;158
14.6.2;THEORY;158
14.6.3;EXPERIMENTAL SETUP;159
14.6.4;GAUSSIAN-BEAM EXPANSION;159
14.6.5;CONCLUSIONS;160
14.6.6;REFERENCES;160
14.7;Chapter 31. A Simplified Numerical Method To Predict The Impulse Radiation Pattern Of Linear And Curved Array Transducers;162
14.7.1;INTRODUCTION;162
14.7.2;SIMULATION METHOD;163
14.7.3;RESULTS AND DISCUSSION;163
14.7.4;CONCLUSION;164
14.7.5;REFERENCES;164
14.8;Chapter 32. Calculation of Electromechanical Coupling Coefficients of Ultrasonic Lamb Waves;166
14.8.1;INTRODUCTION AND ANALYSIS;166
14.8.2;CALCULATIONS AND RESULTS;167
14.8.3;REFERENCES;168
14.9;Chapter 33. Influence of the Layer Coupling the Transducer to the Sample in Acoustic Impedancemetry;170
14.9.1;INTRODUCTION;170
14.9.2;COUPLING LAYER INFLUENCE;170
14.9.3;SOME USEFUL FORMULA (ß' neglected);171
14.9.4;SAMPLE AND COUPLING LAYER CHARACTERISTICS;171
14.9.5;CONCLUSION;173
14.9.6;REFERENCES;173
14.10;Chapter 34. High-efficiency generation of acoustic phase conjugate waves by nonlinear piezoelectricity of PZT ceramics;174
14.10.1;INTRODUCTION;174
14.10.2;THEORY;174
14.10.3;EXPERIMENT;175
14.10.4;CONCLUSION;176
14.10.5;REFERENCES;176
14.10.6;INTRODUCTION;178
14.10.7;PRINCIPLE OF OPERATION;178
14.10.8;EXPERIMENTAL;179
14.10.9;REFERENCES;179
15;Part VIII: Transducers: poster papers;178
15.1;Chapter 35. Surface Acoustic Wave Probe for Nondestructive Testing;178
15.1.1;INTRODUCTION;178
15.1.2;PRINCIPLE OF OPERATION;178
15.1.3;EXPERIMENTAL;179
15.1.4;REFERENCES;179
15.2;Chapter 36. Analysis of Resonator with Directional Converter of R-L Type by Finite Elements Method;182
15.2.1;INTRODUCTION;182
15.2.2;ANALYSIS OF R-L TYPE CONVERTER;182
15.2.3;CONCLUSION;184
15.2.4;REFERENCES;184
15.3;Chapter 37. Comparison of Microphone and Interferometric Detection of Laser Generated Acoustic Waves;186
15.3.1;INTRODUCTION;186
15.3.2;EXPERIMENTAL;186
15.3.3;RESULTS AND DISCUSSION;187
15.3.4;CONCLUSION;188
15.3.5;REFERENCES;188
15.4;Chapter 38. Prediction of Electroacoustic Performances of High Frequency P(VDF-TrFE) Transducers.;190
15.4.1;INTRODUCTION;190
15.4.2;PIEZOELECTRIC MATERIAL;190
15.4.3;TRANSDUCER DESIGN;191
15.4.4;TRANSDUCER SIMULATIONS;191
15.4.5;MEASUREMENTS;191
15.4.6;RESULTS-DISCUSSION;191
15.4.7;CONCLUSION;192
15.4.8;REFERENCES;192
15.5;Chapter 39. The Capacitance Transducer as a Standard Ultrasonic Source in Solids;194
15.5.1;INTRODUCTION;194
15.5.2;THEORY;194
15.5.3;EXPERIMENTAL and RESULTS;195
15.5.4;CONCLUSIONS;196
15.5.5;REFERENCES;196
15.6;Chapter 40. Thermoacoustic Sensor for Ultrasonic Power Measurements;198
15.6.1;INTRODUCTION;198
15.6.2;MEASUREMENT PROCEDURE;198
15.6.3;EQUILIBRIUM TEMPERATURE;199
15.6.4;DETERMINATION OF THE TRANSMITTING RESPONSE;199
15.6.5;CONCLUSION;200
15.6.6;REFERENCES;200
15.7;Chapter 41. Study of the Nearfield Radiated by Stepped Plate Ultrasonic Transducers in Air;202
15.7.1;INTRODUCTION;202
15.7.2;EXPERIMENTAL SET UP;203
15.7.3;EXPERIMENTAL RESULTS;203
15.7.4;CONCLUSIONS;204
15.7.5;REFERENCES;204
15.8;Chapter 42. INFLUENCE OF DIFFERENT PHYSICAL PARAMETERS ON THE PIEZOELECTRIC PROPERTIES OF Sr MODIFIED LEAD METANIOBATE;206
15.8.1;INTRODUCTION;206
15.8.2;RESULTS AND DISCUSSION;206
15.8.3;CONCLUSION;208
15.8.4;REFERENCES;208
15.8.5;ACKNOWLEDGEMENTS;208
15.9;Chapter 43. GHz-range Wide Band and Low-loss SAW Filters Using Internal Floating Electrode Type Unidirectional Transducers;210
15.9.1;Introduction;210
15.9.2;Structures of FEUDTs;210
15.9.3;Experimental results of directivity;210
15.9.4;Application to low loss filters;211
15.9.5;Resistivity of Al thin films;212
15.9.6;Conclusions;213
15.9.7;References;213
15.10;Chapter 44. The Characteristics of a High Power Ultrasonic Transducer Determined by the Experimental Technique;214
15.10.1;INTRODUCTION;214
15.10.2;SETUP AND MEASUREMENT METHOD OF THE EXPERIMENT;215
15.10.3;EXPERIMENTAL RESULTS;215
15.10.4;DISCUSSION;216
15.10.5;REFERENCES;216
15.11;Chapter 45. Numerical Computation of the Acoustic Field Passing Through a Plane Interface; Application to New Phased Array Transducers;218
15.11.1;INTRODUCTION;218
15.11.2;MODEL AND COMPUTATIONAL DETAILS;219
15.11.3;EXPERIMENT;220
15.11.4;RESULTS-DISCUSSION;220
15.11.5;CONCLUSIONS;220
15.11.6;REFERENCES;220
15.12;Chapter 46. The Effects of Non-uniform Sampling of the Ultrasound Field on the Reconstruction of Transducer Source Distributions;222
15.12.1;SIMULATION OF NON-UNIFORM SAMPLING;222
15.12.2;EFFECTS OF POSITIONAL JITTER;223
15.12.3;OPTIMAL FILTERING;223
15.12.4;CONCLUDING REMARKS;224
15.12.5;ACKNOWLEDGEMENTS;224
15.12.6;REFERENCES;224
15.13;Chapter 47. Ultrasonic Metering of Gas Flows;226
15.13.1;INTRODUCTION;226
15.13.2;DESCRIPTION OF THE METER;226
15.13.3;RESULTS;228
15.13.4;CONCLUSION;229
15.13.5;REFERENCES;229
15.14;Chapter 48. An Efficient Airborne Ultrasonic Transducer;230
15.14.1;An Efficient Airborne Ultrasonic Transducer;230
15.14.2;INTRODUCTION;230
15.14.3;EVOLUTION OF THE TRANSDUCER;230
15.14.4;THE TRANSDUCER;231
15.14.5;RESULTS;231
15.14.6;CONCLUSION;232
15.14.7;ACKNOWLEDGMENT;232
15.14.8;REFERENCES;232
15.15;Chapter 49. A Study of Acoustic Birefringence in Aluminium Plate Using Broadband Electromagnetic Acoustic Transducers (EMATs);234
15.15.1;INTRODUCTION;234
15.15.2;THEORY;235
15.15.3;EXPERIMENTAL PROCEDURE AND RESULTS;236
15.15.4;CONCLUSION;236
15.15.5;REFERENCES;237
16;Part IX: NDE/NDT: oral papers;238
16.1;Chapter 50. Autofocusing ultrasonic propagation in composite media based on laser generated ultrasound;238
16.1.1;I Introduction;238
16.1.2;II Thermoelastic generation in composite materials;238
16.1.3;Ill Slowness surface and focusing effect;238
16.1.4;IV Experimental results and discussion;239
16.1.5;V Conclusion;240
16.1.6;References;240
16.2;Chapter 51. AE SOURCE CHARACTERIZATION IN LATTICE–TYPE STRUCTURES USING SMART SIGNAL PROCESSING;242
16.2.1;INTRODUCTION;242
16.2.2;EXPERIMENTAL SET–UP AND MEASURMENTS;243
16.2.3;NEURAL–LIKE SIGNAL PROCESSING ALGORITHMS;244
16.2.4;RESULTS;245
16.2.5;CONCLUSIONS;247
16.2.6;ACKNOWLEDGEMENTS;247
16.2.7;REFERENCES;247
16.3;Chapter 52. Advanced Ultrasonic Probes for Scanning of Large Structures;248
16.3.1;INTRODUCTION;248
16.3.2;ULTRASONIC SCAN PROBES;248
16.3.3;CONCLUSION;249
16.4;Chapter 53. Time-Domain Ultrasonic NDE of Layered Media;252
16.4.1;INTRODUCTION;252
16.4.2;THEORY AND SENSITIVITY ANALYSIS;252
16.4.3;RESULTS AND CONCLUSIONS;254
16.4.4;ACKNOWLEDGEMENT;254
16.4.5;REFERENCE;255
16.5;Chapter 54. Design of Low Frequency Acoustic Waveguide Probe for NDT of Concrete Structures;256
16.5.1;INTRODUCTION;256
16.5.2;CONCEPT OF AN ACOUSTIC WAVEGUIDE;256
16.5.3;PRINCIPLE OF OPERATION;257
16.5.4;NUMERICAL RESULTS;257
16.5.5;EXPERIMENTAL RESULTS;258
16.5.6;ACKNOWLEDGEMENT;258
16.5.7;REFERENCES;258
17;Part X: NDE/NDT: poster papers;260
17.1;Chapter 55. AE propertie s in superconducting rotor;260
17.1.1;INTRODUCTION;260
17.1.2;SUPERCONDUCTING ROTOR AND A E DETECTING SYSTEM;260
17.1.3;EXTERNAL/INTERNAL FORCE FACTOR & AE;261
17.1.4;SIMPLIFIED MODEL AND TWO AE;261
17.1.5;EXPERIMENTAL RESULTS AND DISCUSSIONS;262
17.2;Chapter 56. Evaluation of Microfracture due to Thermal Shock by Acoustic Emission;264
17.2.1;INTRODUCTION;264
17.2.2;EXPERIMENTAL;264
17.2.3;RESULTS AND DISCUSSION;265
17.2.4;CONCLUSIONS;267
17.2.5;REFERENCES;267
17.3;Chapter 57. Study of E-glass Fibres at Elevated Temperatures using Acoustic Emission;268
17.3.1;1. INTRODUCTION;268
17.3.2;2. ACOUSTIC EMISSION TECHNIQUE;268
17.3.3;3. RESULTS;268
17.3.4;4. CONCLUSIONS;269
17.3.5;5. REFERENCES;270
17.4;Chapter 58. Analysis of Grinding Process Acoustic Emission by a Neural Network;272
17.4.1;INTRODUCTION;272
17.4.2;THE EXPERIMENTAL SET-UP AND ESTIMATION SYSTEM;272
17.4.3;ANALYSIS AND RESULTS;273
17.4.4;DISCUSSION AND CONCLUSION;274
17.4.5;REFERENCES;274
17.5;Chapter 59. Ultrasonic NDE Guided Wave Mode Selection Principles;276
17.5.1;INTRODUCTION;276
17.5.2;SAMPLE RESULTS;279
17.5.3;CONCLUDING REMARKS;279
17.5.4;ACKNOWLEDGEMENT;280
17.5.5;REFERENCES;281
17.6;Chapter 60. THE DETECTION OF A WEAK ADHESIVE/ADHEREND INTERFACE IN BONDED JOINTS;282
17.6.1;INTRODUCTION;282
17.6.2;PREDICTION OF THE REFLECTION COEFFICIENTS;282
17.6.3;EXPERIMENTS;283
17.6.4;CONCLUSIONS;284
17.6.5;REFERENCES;284
17.7;Chapter 61. Ultrasonic Evaluation of Ceramics During Manufacture;286
17.7.1;INTRODUCTION;286
17.7.2;APPARATUS AND EXPERIMENTS;286
17.7.3;RESULTS AND DISCUSSION;287
17.7.4;CONCLUSIONS;287
17.7.5;REFERENCES;288
17.7.6;ACKNOWLEDGEMENTS;288
17.8;Chapter 62. Characterization of the Interface between Two Polymers by Surface Acoustic Waves;290
17.8.1;INTRODUCTION;290
17.8.2;EXPERIMENTAL;290
17.8.3;RESULTS AND DISCUSSION;291
17.8.4;THEORETICAL INTERPRETATION;291
17.8.5;CONCLUSION;292
17.8.6;REFERENCES;292
17.9;Chapter 63. APPLICATION OF THE INFORMATION THEORY APPROACH TO ACOUSTIC METHODS OF TEXTURE ASSESSMENT;294
17.9.1;INTRODUCTION;294
17.9.2;FORMULATION OF THE PROBLEM AND ITS SOLUTION;294
17.9.3;NUMERICAL RESULTS;296
17.9.4;REFERENCES;297
17.10;Chapter 64. INTERACTION OF LAMB WAVES WITH A DEFECT;298
17.10.1;INTRODUCTION;298
17.10.2;THEORY OF ROKHLIN;298
17.10.3;PRINCIPLE OF MEASUREMENT;298
17.10.4;EXPERIMENTAL RESULTS;299
17.10.5;CONCLUSION;299
17.10.6;REFERENCES;299
17.11;Chapter 65. DYNAMIC HARDNESS TESTER AND CURE METER;302
17.11.1;INTRODUCTION;302
17.11.2;THEORY;303
17.11.3;EXPERIMENT;305
17.11.4;REFERENCES;306
17.12;Chapter 66. Fungi Decay in Wood by Combined Nondestructive Testings;308
17.12.1;INTRODUCTION;308
17.12.2;METHODS;308
17.12.3;RESULTS;309
17.12.4;CONCLUSION;309
17.12.5;ACKNOWLEDGEMENTS;310
17.13;Chapter 67. A broad band technique to simultaneously measure the compression and shear acoustic wave velocities in thin samples of engineering material;312
17.13.1;INTRODUCTION;312
17.13.2;GONIOMETER METHOD;313
17.13.3;MEASUREMENT SYSTEM;313
17.13.4;EXPERIMENTAL RESULTS;314
17.13.5;DISCUSSION AND CONCLUSIONS;315
17.13.6;REFERENCES;315
17.14;Chapter 68. An integrated wideband ultrasonic signal acquisition instrument;316
17.14.1;INTRODUCTION;316
17.14.2;INTERLEAVING;316
17.14.3;SIGNAL AVERAGING;317
17.14.4;TESTING;317
17.14.5;CONCLUSION;318
17.14.6;REFERENCES;318
17.15;Chapter 69. AUTOMATIC ALGORITHMS FOR DIGITAL SIGNAL PROCESSING TO CHARACTERISE THE PROPAGATION OF ULTRASOUND IN THIN ADHESIVE LAYERS;320
17.15.1;INTRODUCTION;320
17.15.2;BASELINE CORRECTION;320
17.15.3;PEAK WINDOWING;322
17.15.4;CONCLUSION;323
17.15.5;REFERENCES;323
17.16;Chapter 70. Thickness Measurements Based on a New Time Discrimination Technique;324
17.16.1;INTRODUCTION;324
17.16.2;THEORY;325
17.16.3;EXPERIMENTAL RESULTS ON CONCRETE;326
17.16.4;CONCLUSION;326
17.16.5;REFERENCES;326
17.17;Chapter 71. Ultrasonic Description of the Condition of the Surface Layer of Asphalt Concrete Pavement;328
17.17.1;INTRODUCTION;328
17.17.2;METHOD;329
17.17.3;THE EXPERIMENTAL SECTION;329
17.17.4;OBSERVATIONS AND STANDARD EXAMINATIONS;329
17.17.5;STATISTICAL ANALYSIS;330
17.17.6;SUMMARY;330
17.17.7;REFERENCES;331
17.18;Chapter 72. Defect sizing in thin components;332
17.18.1;INTRODUCTION;332
17.18.2;THE MODEL;332
17.18.3;CALCULATING THE PRESSURE DISTRIBUTION USING CORNER EFFECT;333
17.18.4;RESULTS OF EXPERIMENTS AND SIMULATIONS;334
17.18.5;CONCLUSION;334
17.18.6;REFERENCES;334
17.19;Chapter 73. UT Modeling: Predictions of edge Diffraction, Corner Effect and Mode Conversions;336
17.19.1;INTRODUCTION;336
17.19.2;POSITION OF THE PROBLEM;336
17.19.3;MODELING;337
17.19.4;VALIDATION;337
17.19.5;CONCLUSION;338
17.19.6;REFERENCES;338
17.20;Chapter 74. Dynamic Measurements of Elastic Properties in Solid Circular Cylinders;340
17.20.1;INTRODUCTION;340
17.20.2;THEORY;340
17.20.3;EXPERIMENTS;341
17.20.4;RESULTS AND CONCLUSIONS;341
17.20.5;REFERENCES;342
17.21;Chapter 75. Ultrasonic Characterization of Epoxy Resin during Cure;344
17.21.1;INTRODUCTION;344
17.21.2;EXPERIMENTAL;344
17.21.3;RESULTS AND DISCUSSION;345
17.21.4;CONCLUSION;346
17.21.5;REFERENCES;346
17.22;Chapter 76. Negative Factors Influencing the ultrasonic Inspection of Railway Axle Structure;348
17.22.1;INTRODUCTION;348
17.22.2;DISCUSSION;348
17.22.3;CONCLUSION;351
17.22.4;REFERENCES;351
17.23;Chapter 77. Ultrasonic Nondestructive Evaluation of Thin (Sub-Wavelength) Coatings;352
17.23.1;INTRODUCTION;352
17.23.2;TRANSFER FUNCTIONS AND SENSITIVITY ANALYSIS;352
17.23.3;RESULTS AND CONCLUSIONS;353
17.23.4;ACKNOWLEDGEMENT;353
17.23.5;REFERENCE;353
17.24;Chapter 78. Improved NDT performance through the use of extremely damped 1-3 piezocomposite transducers;356
17.24.1;1. INTRODUCTION;356
17.24.2;2. PIEZOCOMPOSITE PRINCIPLES AND ADVANTAGES;356
17.24.3;3. THE REMOTE HEAD;357
17.24.4;4. EXPERIMENTAL RESULTS;358
17.24.5;5. CONCLUSION;359
17.24.6;REFERENCES;359
17.25;Chapter 79. 3D Ultrasonic Modelling;360
17.25.1;INTRODUCTION;360
17.25.2;MODELISATION OF ULTRASONIC PROPAGATION IN THE SOLID;360
17.25.3;MODELISATION OF PROPAGATION IN THE FLUID;361
17.25.4;COMPARISON OF NUMERICAL AND EXPERIMENTAL SIGNALS;361
17.25.5;VARIATION OF PARAMETERS;361
17.25.6;APPLICATION;362
17.25.7;CONCLUSION;362
17.25.8;REFERENCE;362
18;Part XI: Two phase media: oral papers;364
18.1;Chapter 80. Ultrasonic Puls-Echo Measurements of Bubble and Plug Velocities in a Gas-Liquid Two-Phase Flow;364
18.1.1;INTRODUCTION;364
18.1.2;FUNDAMENTAL EQUATIONS OF BUBBLE MOTION;364
18.1.3;EXPERIMENTAL RESULTS AND DISCUSSION;365
18.1.4;CONCLUSION;365
18.1.5;REFERENCES;365
18.2;Chapter 81. Ultrasonic Investigation of Contact Surfaces between Grains in Random Granular Media; Effects of a Variable Compression;368
18.2.1;INTRODUCTION;368
18.2.2;MODEL FOR A SET OF ARRAYS OF SPHERES IN CONTACT;368
18.2.3;EXPERIMENTAL PROCEDURES AND RESULTS;370
18.2.4;CONCLUSION;371
18.2.5;REFERENCES;371
18.3;Chapter 82. Biot's Slow Wave in Porous Materials I. Velocity Dispersion Measurements;372
18.3.1;INTRODUCTION;372
18.3.2;EXPERIMENTAL METHOD;372
18.3.3;CONCLUSIONS;374
18.3.4;ACKNOWLEDGEMENTS;374
18.3.5;REFERENCES;374
18.4;Chapter 83. Theory and Adaptive Algorithms Related to the Split Spectrum Technique for Interference Noise Suppression;376
18.4.1;INTRODUCTION;376
18.4.2;POLARITY THRESHOLDING IN A NEURAL NETWORK FORMALISM;376
18.4.3;SPLIT SPECTRUM AND THE SHORT TIME FOURIER TRANSFORM;377
18.4.4;MEMORYLESS SPLIT SPECTRUM ALGORITHMS;378
18.4.5;DISCUSSION;378
18.4.6;REFERENCES;378
19;Part XII:Two phase media: posterpaper;380
19.1;Chapter 84. A Parameter-Free Signal Processing Algorithm for Material Noise Suppression;380
19.1.1;INTRODUCTION;380
19.1.2;FRAGMENT SPECTRUM PROCESSING;381
19.1.3;EXPERIMENTAL RESULTS;381
19.1.4;CONCLUDING REMARKS;382
19.1.5;ACKNOWLEDGEMENTS;382
19.1.6;REFERENCES;382
20;Part XIII: Physicala stics–crystals: oralpaper;384
20.1;Chapter 85. Characterizing Sub-millimeter Crystals with a Wide-band GHz Interferometer;384
20.1.1;INTRODUCTION;384
20.1.2;THE INTERFEROMETER;384
20.1.3;THE EFFECT OF THE BOND;385
20.1.4;ACKNOWLEDGMENT;386
20.1.5;REFERENCES;386
21;Part XIV: Physicala stics–crystals: poster papers;388
21.1;Chapter 86. Ultrasonic Attenuation in Polycrystals Including Crystallographic Orientation Correlation;388
21.1.1;INTRODUCTION;388
21.1.2;CONTRIBUTIONS TO THE OVERALL ATTENUATION;388
21.1.3;EFFECT OF ORIENTATION CORRELATION;389
21.1.4;CONCLUSIONS;390
21.1.5;REFERENCES;390
21.2;Chapter 87. Ultrasonic Absorption Studies of Some Doped Mixed Crystals of CaCl2 in KBr-KCl;392
21.2.1;INTRODUCTION;392
21.2.2;EXPERIMENTAL PROCEDURE;392
21.2.3;RESULTS and DISCUSSION;393
21.2.4;REFERENCES;395
22;Part XV: Physic alacoustics–anisotropy: oral papers;396
22.1;Chapter 88. EVALUATION OF INTERFACIAL PROPERTIES IN ISOTROPIC AND ANISOTROPIC LAYER SUBSTRATES;396
22.1.1;INTRODUCTION;396
22.1.2;BACKGROUND;396
22.1.3;IMPERFECT INTERFACES;397
22.1.4;THE EFFECT OF ANISOTROPY;399
22.1.5;SUMMARY AND CONCLUSIONS;400
22.1.6;ACKNOWLEDGMENTS;400
22.1.7;REFERENCES;400
22.2;Chapter 89. Three-Dimensional Transient Waves in Layered Elastic Media;404
22.2.1;INTRODUCTION;404
22.2.2;THE FUNDAMENTAL SOLUTION;404
22.2.3;NUMERICAL EXAMPLES;406
22.2.4;REFERENCES;407
22.3;Chapter 90. Anisotropy in the Acoustic Transmission Properties of Fibre-Reinforced Laminates: Theoretical Prediction and Experimental Observation;408
22.3.1;INTRODUCTION;408
22.3.2;EXPERIMENTAL SYSTEM AND MEASUREMENT TECHNIQUE;408
22.3.3;THEORY;409
22.3.4;RESULTS AND DISCUSSION;409
22.3.5;CONCLUSION;409
22.3.6;ACKNOWLEDGEMENT;410
22.3.7;REFERENCES;410
22.4;Chapter 91. Propagation of Leaky Surface Acoustic Waves on LiTaO3 Substrate;412
22.4.1;INTRODUCTION;412
22.4.2;THEORY;412
22.4.3;RESULTS AND DISCUSSION;413
22.4.4;CONCLUSION;415
22.4.5;ACKNOWLEDGEMENT;415
22.4.6;REFERENCES;415
22.5;Chapter 92. Acoustic Waves Propagation in Anisotropic Materials : Polarizations and Slowness Surfaces Singularities;416
22.5.1;INTRODUCTION;416
22.5.2;THEORETICAL BACKGROUND;416
22.5.3;RESULTS;417
22.5.4;CONCLUSION;418
22.5.5;REFERENCES;418
23;Part XVI: Physicala coustics–anisotropy: poster papers;420
23.1;Chapter 93. Surface waves in anisotropic solids: theoretical calculation and experiment;420
23.1.1;INTRODUCTION;420
23.1.2;EXPERIMENTAL WORKS;420
23.1.3;THEORY FOR ANISOTROPIC SURFACE WAVES;421
23.1.4;RESULTS AND DISCUSSIONS;421
23.1.5;CONCLUSIONS;422
23.1.6;ACKNOWLEDGMENT;422
23.1.7;REFERENCES;422
23.2;Chapter 94. EXISTENCE OF ONE COMPONENT SURFACE WAVES IN ANISOTROPIC ELASTIC MEDIA;424
23.2.1;INTRODUCTION;424
23.2.2;THEORETICAL OUTLINE;424
23.2.3;NUMERICAL EXAMPLES;426
23.2.4;CONCLUSIONS;427
23.2.5;ACKNOWLEDGEMENT;427
23.2.6;REFERENCES;427
23.3;Chapter 95. EXISTENCE OF SECOND SLIP WAVES IN ANISOTROPIC ELASTIC MEDIA;428
23.3.1;INTRODUCTION;428
23.3.2;GENERAL THEORY;428
23.3.3;EXISTENCE CRITERIA;429
23.3.4;CONCLUSION;430
23.3.5;REFERENCES;430
23.3.6;A NUMERICAL EXAMPLE;431
24;Part XVII: Physicala coustics-composites: oral papers;432
24.1;Chapter 96. Characterization of Thin, Fiber-reinforced Laminates by Ultrasonic Point-source/Point-receiver Techniques;432
24.1.1;INTRODUCTION;432
24.1.2;ULTRASONIC SYSTEMS FOR THIN SPECIMENS;433
24.1.3;ANALYSIS AND RESULTS;433
24.1.4;CONCLUSIONS;434
24.1.5;REFERENCES;434
24.2;Chapter 97. Far-field Directivity Patterns For (YZw)36° Lithium Niobate Bars;436
24.2.1;INTRODUCTION;436
24.2.2;I. EXTRAPOLATION ALGORITHM FOR FAR-FIELD DIRECTIVITY PATTERN COMPUTATION;436
24.2.3;II. IN-AIR ELECTRICAL IMPEDANCE AND FAR-FIELD DIRECTIVITY PATTERNS (YZw)36° TRANSDUCER BAR;437
24.2.4;CONCLUSION;438
24.3;Chapter 98. The Effect of Debonding in Fibre-Reinforced Composites on Ultrasonic Backscattering;440
24.3.1;INTRODUCTION;440
24.3.2;THEORETICAL WORK;440
24.3.3;THIN AIR SHELL MODEL;440
24.3.4;SLIP MODEL;441
24.3.5;EXPERIMENTAL WORK;441
24.3.6;CONCLUSION;442
24.3.7;REFERENCES;442
24.4;Chapter 99. A Feasibility Study of the On-line Characterization of Polymers Blends using Ultrasound;444
24.4.1;INTRODUCTION;444
24.4.2;MATERIALS AND WAVE PROPAGATION;445
24.4.3;EXPERIMENTAL PROCEDURE AND RESULTS;446
24.4.4;CONCLUSIONS;446
24.4.5;REFERENCES;446
24.5;Chapter 100. Multilayer PVDF Polymer Transducers for Pulse Compression Applications;448
24.5.1;INTRODUCTION;448
24.5.2;CRITERIA IN SELECTION OF BINARY CODE PATTERN;448
24.5.3;SIMULATION RESULTS;449
24.5.4;CONSTRUCTION AND TESTING OF BARKER CODED TRANSDUCERS;449
24.5.5;CONCLUSION;449
24.5.6;REFERENCES;450
24.6;Chapter 101. Transmission coefficient of multilayered absorbing anisotropic media. A solution to the numerical limitations of the Thomson-Haskell method. Application to composite materials;452
24.6.1;Introduction;452
24.6.2;I. Transmission coefficient of multilayered absorbing anisotropic plates;452
24.6.3;II. Numerical instabilities of the method;453
24.6.4;III. A solution to the numerical instabilities of the method;453
24.6.5;IV. Results and discussion;454
24.6.6;Conclusion;454
24.6.7;References;455
25;Part XVIII: Physical acoustics-composites: poster paper;456
25.1;Chapter 102. DISPERSION OF LONGITUDINAL ULTRASONIC WAVE VELOCITY THROUGH CARBON-EPOXY COMPOSITE MATERIALS;456
25.1.1;INTRODUCTION;456
25.1.2;RESULTS FROM A-SCAN AND ULTRASONIC SPECTROSCOPY STUDIES;456
25.1.3;MULTILAYER MODELING;457
25.1.4;STUDY OF THE ELASTIC WAVE DISPERSION;458
25.1.5;CONCLUSION;459
25.1.6;REFERENCES;459
26;Part XIX: Physical acoustics: oral papers;460
26.1;Chapter 103. Enhancement of Driving Force of Acoustic Streaming Due to Nonlinear Attenuation of Ultrasound;460
26.1.1;INTRODUCTION;460
26.1.2;DRIVING FORCE OF ACOUSTIC STREAMING;460
26.1.3;NONLINEAR PROPAGATION OF FINITE–AMPLITUDE SOUND;461
26.1.4;INFLUENCE ON STREAMING VELOCITY;461
26.1.5;CONCLUSION;462
26.1.6;REFERENCES;462
26.2;Chapter 104. X-Ray Diffraction in Crystals Excited by Surface Acoustic Waves;464
26.2.1;INTRODUCTION;464
26.2.2;EXPERIMENTAL PROCEDURES AND RESULTS;465
26.2.3;CONCLUSION;466
26.2.4;REFERENCES;466
26.3;Chapter 105. Radiative Transfer of Ultrasound;468
26.3.1;INTRODUCTION;468
26.3.2;THE ULTRASONIC RADIATIVE TRANSFER EQUATION;469
26.3.3;REFERENCES;470
26.4;Chapter 106. Laser Beam Frequency Shifting by Means of Hypersound;472
26.4.1;INTRODUCTION;472
26.4.2;GENERAL CONSIDERATION OF THE PROBLEM;472
26.4.3;CONCLUSION;474
26.4.4;REFERENCES;474
26.5;Chapter 107. Reflection of the evanescent plane wave on a plane interface;476
26.5.1;Introduction;476
26.5.2;I- Experimental apparatus;476
26.5.3;II- Generalised Snell's laws;477
26.5.4;Ill-Results and discussions;478
26.5.5;Conclusion;479
26.5.6;References;479
26.5.7;Acknowledgement;479
27;Part XX: Phsical acoustics: poster papers;480
27.1;Chapter 108. Ultrasonic Attenuation in Normal Valence Semi Conductors;480
27.1.1;INTRODUCTION;480
27.1.2;THEORY OF PRESENT EVALUATION;480
27.1.3;CONCLUSIONS;482
27.1.4;REFERENCES;483
27.2;Chapter 109. Relaxational Properties of Shear and Bulk Elastic Moduli of Viscous Liquids;484
27.2.1;INTRODUCTION;484
27.2.2;DISTRIBUTION OF RELAXATION TIMES IN THE THEORY OF VISCOELASTICITY;485
27.2.3;A COMPARISON WITH EXPERIMENT, THE BARLOW, ERGINSAV AND LAMB MODEL;486
27.2.4;ATTENUATION PROPERTIES OF VISCOUS LIQUIDS SUBJECTED TO BULK STRESSES;486
27.2.5;REFERENCES;487
27.3;Chapter 110. Ultrasonic Speed and Isentropic Compressibility of Asymmetric Liquid Ternary Mixtures under High Pressure: a Test for Equations of State and Associated Mixing Rules;488
27.3.1;INTRODUCTION;488
27.3.2;EXPERIMENTAL;488
27.3.3;RESULTS AND DISCUSSION;489
27.3.4;EXPERIMENTAL SPEEDS OF SOUND COMPARED WITH THE PREDICTIONS OF VARIOUS EQUATIONS OF STATE;489
27.3.5;REFERENCES;490
27.4;Chapter 111. THE COMPARATIVE STUDY OF THE APPEARANCE OF ACOUSTIC EMISSION (AE) SIGNALS;492
27.4.1;SCOPE OF RESEARCH BY AE METHOD;492
27.4.2;DESCRIPTORS OF AE SIGNALS;492
27.4.3;AE AND CONDUCTIVITY DURING STRENGTH TESTS OF CERAMICS;492
27.4.4;INVESTIGATING A HYDROGEN PEROXIDE DECOMPOSITION REACTION;494
27.4.5;ACKNOWLEDGEMENT;494
27.4.6;REFERENCES;494
27.5;Chapter 112. Experimental manifestation of the resonant interaction between two close elastic shells;496
27.5.1;INTRODUCTION;496
27.5.2;EXPERIMENTAL CONDITION;496
27.5.3;EXPERIMENTAL RESULTS;497
27.5.4;CONCLUSION;497
27.5.5;BIBLIOGRAPHY;497
27.6;Chapter 113. Resonance Interpretation with Surface Waves propagating on Cylindrical Shells Bounded by Hemispherical Endcaps;500
27.6.1;INTRODUCTION;500
27.6.2;NORMAL EXCITATION;500
27.6.3;AXIAL EXCITATION;501
27.6.4;CONCLUSION;501
27.6.5;REFERENCES;501
27.7;Chapter 114. Measurement of Elastic Plate Resonance Width;504
27.7.1;THEORETICAL APPROACH;504
27.7.2;EXPERIMENTAL CONFIGURATION;505
27.7.3;RESULTS AND ANALYSIS;505
27.7.4;REFERENCES;506
27.8;Chapter 115. Acoustic Anomalies of Ferromagnetic and Antiferromagnetic Invar Alloys;508
27.8.1;INTRODUCTION;508
27.8.2;EXPERIMENTAL AND RESULTS;509
27.8.3;DISCUSSION;510
27.8.4;REFERENCES;511
27.9;Chapter 116. Ultrasonic Study of Turbulence;512
27.9.1;INTRODUCTION;512
27.9.2;PRELIMINARIES;512
27.9.3;EXPERIMENTAL;513
27.9.4;DISCUSSION AND CONCLUSIONS;514
27.9.5;REFERENCES;514
27.10;Chapter 117. A Study on Directional Converter for Ultrasonic Longitudinal Mode Vibration by using a Hollow Cylinder Type Resonator;516
27.10.1;INTRODUCTION;516
27.10.2;DESIGN PROCEDURE;516
27.10.3;TRIAL FABRICATION AND EXPERIMENTAL RESULTS;517
27.10.4;CONCLUSION;518
27.10.5;REFERENCES;518
28;Part XXI: Particles/fields: oral papers;520
28.1;Chapter 118. Flocculation Processes in Colloidal Systems Studied by a Fast Wide-bandwidth Ultrasonic Technique;520
28.1.1;INTRODUCTION;520
28.1.2;MEASUREMENT TECHNIQUE;521
28.1.3;SCATTERING MODELS OF ACOUSTIC PROPAGATION;521
28.1.4;RESULTS;522
28.1.5;CONCLUSION;522
28.1.6;REFERENCES;522
28.2;Chapter 119. Ultrasound Enhanced Phase Partition of Cells;524
28.2.1;INTRODUCTION;524
28.2.2;MATERIALS AND METHODS;524
28.2.3;RESULTS;525
28.2.4;DISCUSSION;526
28.2.5;ACKNOWLEDGEMENTS;526
28.2.6;REFERENCES;526
28.3;Chapter 120. Frequency Dependence of the Acoustic Loss Distribution in Piezoceramic/Liquid Resonators;528
28.3.1;INTRODUCTION;528
28.3.2;ANALYSIS;529
28.3.3;RESULTS AND CONCLUSION;530
28.3.4;REFERENCES;530
28.4;Chapter 121. Aggregation and Separation of Hybridoma Cells by Ultrasonic Resonance Fields - Eifect on Viability, Growth Rate and Productivity;532
28.4.1;INTRODUCTION;532
28.4.2;METHODS AND APPARATUS;532
28.4.3;RESULTS;533
28.4.4;CONCLUSION;534
28.4.5;REFERENCES;534
28.5;Chapter 122. Trapping of Suspended Biological Particles by use of Ultrasonic Resonance Fields;536
28.5.1;INTRODUCTION;536
28.5.2;RESONATOR DESIGN AND EXPERIMENTAL SET-UP;536
28.5.3;MEASUREMENT OF SEPARATION EFFICIENCY AND CELL VIABILITY;537
28.5.4;SUMMARY AND CONCLUSION;537
28.5.5;ACKNOWLEDGEMENT;537
29;Part XXII: Particles/fields: poster paper;540
29.1;Chapter 123. Separation of Suspended Particles by use of the Inclined Resonator Concept;540
29.1.1;INTRODUCTION;540
29.1.2;EXPERIMENTAL SETUP;541
29.1.3;PROCESS PARAMETERS AND BASIC TESTING;541
29.1.4;SEPARATION EXPERIMENTS AND RESULTS;541
29.1.5;CONCLUSIONS;542
29.1.6;REFERENCES;542
30;Part XXII: Imaging: oral papers;544
30.1;Chapter 124. A New Hybrid, Real-Time Ultrasonic Imaging System;544
30.1.1;INTRODUCTION;544
30.1.2;BACKGROUND WORK;544
30.1.3;THE NEW DEVELOPMENT - APPROACH, METHODS AND TECHNIQUES;545
30.1.4;SYSTEM DESCRIPTION AND OPERATION;545
30.1.5;RESULTS;546
30.1.6;CONCLUSIONS;546
30.1.7;ACKNOWLEDGEMENT;546
30.1.8;REFERENCES;547
30.2;Chapter 125. A Parallel Processing Approach To Acoustic Tomography;548
30.2.1;INTRODUCTION;548
30.2.2;A GEOMETRIC RAY TRACER;548
30.2.3;ADAPTING ACOUSTIC TOMOGRAPHY TO A PARALLEL PROCESSING ENVIRONMENT;549
30.2.4;TOMOGRAPHIC IMAGE RECONSTRUCTION;549
30.2.5;RESULTS AND DISCUSSION;550
30.2.6;CONCLUSIONS;550
30.2.7;REFERENCES;551
30.3;Chapter 126. Laser-Induced Spallation of Surface Films Monitored with a 300 MHz Fiber-Optic Interferometer;552
30.3.1;INTRODUCTION;552
30.3.2;FIBER-OPTIC INTERFEROMETER;552
30.3.3;SPALLATION STUDIES;553
30.3.4;CONCLUSION;554
30.3.5;REFERENCES;554
30.4;Chapter 127. Ultrasonic Flux Imaging In Anisotropic Solids;556
30.4.1;INTRODUCTION;556
30.4.2;EXPERIMENTAL METHOD;557
30.4.3;THEORY OF ULTRASONIC FLUX IMAGING;557
30.4.4;REFERENCES;558
30.5;Chapter 128. Small size ultrasonic sources for time-of-flight diffraction tomography;560
30.5.1;INTRODUCTION;560
30.5.2;RESEARCH WORK OBJECTIVES AND MAIN NOVELTIES;560
30.5.3;THE TIME-OF-FLIGHT DIFFRACTION TOMOGRAPHY ALGORITHM;561
30.5.4;DESIGN OF A PROTOTYPE MASKING SYSTEM FOR HIGH EFFICIENCY IMMERSION PROBES;562
30.5.5;RESULTS OF EXPERIMENTAL IMAGES;562
30.5.6;CONCLUSION;562
30.5.7;REFERENCES;563
31;Part XXIII: Imaging: poster papers;564
31.1;Chapter 129. Definition of a New Measure Based on Co-occurrence Matrix for the Threshold Selection of Ultrasonic Images in the Nuclear Field;564
31.1.1;INTRODUCTION;564
31.1.2;SEGMENTATION ALGORITHM;564
31.1.3;APPLICATIONS;566
31.1.4;CONCLUSION;567
31.1.5;REFERENCES;567
31.2;Chapter 130. Evaluation of a Point-spread-function of Focusing Systems Using Spherical Reflector;568
31.2.1;INTRODUCTION;568
31.2.2;SIGNAL FORMATION IN FOCUSING SYSTEM WITH SPHERICAL REFLECTOR;568
31.2.3;EXPERIMENTAL RESULTS AND DISCUSSION;569
31.2.4;CONCLUSION;569
31.2.5;REFERENCES;569
31.3;Chapter 131. A BROADBAND IMAGING SYSTEM OF PULSED ACOUSTIC H ELDS USING AN HETERODYNE INTERFEROMETER;572
31.3.1;INTRODUCTION;572
31.3.2;BLOCK DIAGRAM OF THE IMAGING SYSTEM;572
31.3.3;ANALYSIS;573
31.3.4;EXPERIMENTAL RESULTS;573
31.3.5;CONCLUSION;574
31.3.6;ACKNOWLEDGMENTS;574
31.3.7;REFERENCES;574
32;Part XXIV: Non-linear: oral papers;576
32.1;Chapter 132. Multiple Bragg Imaging of Finite Amplitude Ultrasonic Waves;576
32.1.1;INTRODUCTION;576
32.1.2;THEORY;576
32.1.3;CONCLUSIONS;579
32.1.4;REFERENCES;579
32.2;Chapter 133. High-Frequency Ultrasonic Techniques;580
32.2.1;INTRODUCTION;580
32.2.2;ACOUSTIC TRANSDUCERS AT MICROWAVE FREQUENCIES;580
32.2.3;RF ELECTRONICS;581
32.2.4;ACOUSTIC MICROSCOPY AT 5 GHz;581
32.2.5;ULTRASONIC MEASUREMENTS OF THIN FILMS;581
32.2.6;CONCLUSION;582
32.2.7;REFERENCES;582
32.3;Chapter 134. Photoacoustic Transformation in Nonlinear Crystals With Central Symmetrical Paramagnetic Phase;584
32.3.1;INTRODUCTION;584
32.3.2;THEORETICAL MODEL;584
32.3.3;NUMERICAL ANALYSIS;586
32.3.4;CONCLUSION;587
32.3.5;REFERENCES;587
33;Part XXV: Non-linear: poster papers;588
33.1;Chapter 135. Nonlinear elasticity of HTSC ceramic YBaCuO;588
33.1.1;REFERENCES;590
33.2;Chapter 136. Experimental system for studying ultrasonic non-linear vibrations in metals;592
33.2.1;INTRODUCTION;592
33.2.2;EXPERIMENTAL SET-UP;592
33.2.3;EXPERIMENTAL RESULTS;594
33.2.4;CONCLUSION;594
33.2.5;REFERENCES;594
34;Part XXVI: Underwater: oral papers;596
34.1;Chapter 137. ULTRASONIC BEAM REFLECTION AND TRANSMISSION BY MODEL SEABEDS;596
34.1.1;INTRODUCTION;596
34.1.2;THEORETICAL BASIS;596
34.1.3;NUMERICAL TECHNIQUES;597
34.1.4;NUMERICAL RESULTS;598
34.1.5;CONCLUSIONS;599
34.1.6;REFERENCES;599
34.2;Chapter 138. Propagation of High Frequency Ultrasound Through Suspensions of Marine Sediments;600
34.2.1;INTRODUCTION;600
34.2.2;CHARACTERISTICS OF SUSPENDED SEDIMENT PARTICLES;601
34.2.3;EXPERIMENTAL METHODS FOR SUSPENDED SEDIMENT STUDIES;601
34.2.4;ACOUSTIC NONLINEARITY OF SUSPENDED SEDIMENTS;602
34.2.5;CONCLUSION AND FUTURE TRENDS IN SUSPENDED SEDIMENT STUDIES;604
34.2.6;REFERENCES;604
34.3;Chapter 139. BUBBLE-RELATED SOURCES OF OCEAN AMBIENT NOISE;606
34.3.1;INTRODUCTION;606
34.3.2;HIGH-FREQUENCY NOISE PRODUCTION MECHANISMS;607
34.3.3;INTERMEDIATE-FREQUENCY NOISE PRODUCTION MECHANISMS;608
34.3.4;LOW-FREQUENCY NOISE PRODUCTION MECHANISMS;610
34.3.5;CONCLUSION;611
34.3.6;ACKNOWLEDGEMENT;611
34.3.7;REFERENCES;611
34.4;Chapter 140. Contribution to Sea–Bottom Characterization from Stoneley–Scholte Waves Celerity Dispersion in Special Cases of Media Having Linear Sound Celerity Profiles;612
34.4.1;INTRODUCTION;612
34.4.2;DIRECT PROBLEM SOLUTION;612
34.4.3;INVERSE PROBLEM (NDE);613
34.4.4;CONCLUSION;614
34.4.5;REFERENCES;615
35;Part XXVII: Underwater: poster papers;616
35.1;Chapter 141. Ultrasonic Signals Backscattered from Inhomogeneities of Water Column in the Southern Baltic Sea;616
35.1.1;INTRODUCTION;616
35.1.2;EXPERIMENT;616
35.1.3;CONCLUSION;617
35.1.4;REFERENCES;618
35.2;Chapter 142. Sea Bottom Examinations by Backscattering of Ultrasonic Signals in the Southern Baltic Sea;620
35.2.1;METHODS OF MEASUREMENTS;620
35.2.2;METHODS OF PROCESSING;620
35.2.3;SOME RESULTS;621
35.2.4;ACKNOWLEGMENTS;622
35.2.5;REFERENCES;622
36;Part XXVIII: Medical: oral papers;624
36.1;Chapter 143. Interest of automated measurement of the diameter of the aorta for aortic blood flow monitoring during peroperative survey;624
36.1.1;INTRODUCTION;624
36.1.2;MATERIAL AND METHODOLOGY;624
36.1.3;RESULTS;625
36.1.4;CONCLUSIONS;627
36.1.5;REFERENCES;627
36.2;Chapter 144. Blood Flow Vector Mapping of Doppler Ultrasound Data;628
36.2.1;INTRODUCTION;628
36.2.2;METHOD OF RECONSTRUCTION;628
36.2.3;RESULTS;629
36.2.4;CONCLUSION;629
36.2.5;REFERENCES;630
36.3;Chapter 145. Endothelial Cell Damage Induced by High Energy Shock Waves;632
36.3.1;INTRODUCTION;632
36.3.2;MATERIALS AND METHODS;632
36.3.3;RESULTS;633
36.3.4;DISCUSSION;634
36.3.5;REFERENCES;635
36.4;Chapter 146. Shock Waves and Free Radicals: Cell Protection by Vitamin E in vitro and ex vivo;636
36.4.1;INTRODUCTION;636
36.4.2;MATERIAL & METHODS;637
36.4.3;RESULTS;637
36.4.4;CONCLUSIONS;638
36.4.5;REFERENCES;638
36.5;Chapter 147. Optical Diagnostics of Cavitation and Ultrasound in Materials;640
36.5.1;INTRODUCTION;640
36.5.2;CONCLUSIONS;642
36.5.3;REFERENCES;642
36.6;Chapter 148. Perception of Ultrasounds via Non-linear effect of Tympanic Membrane;644
36.6.1;INTRODUCTION;644
36.6.2;EXPERIMENTS;645
36.6.3;DISCUSSION;646
36.6.4;CONCLUSIONS;646
36.6.5;REFERENCES;646
36.7;Chapter 149. AT-cut Quartz Crystal Biosensor for Blood Assay;648
36.7.1;INTRODUCTION;648
36.7.2;THEORY;648
36.7.3;EXPERIMENTAL SET UP;649
36.7.4;RESULTS AND DISCUSSION;650
36.7.5;CONCLUSION;651
36.7.6;REFERENCES;651
37;Part XXIX: Medical: poster papers;652
37.1;Chapter 150. Lithotripsy : Energy Aspiration of the Matrix in Renal Stones;652
37.1.1;INTRODUCTION;652
37.1.2;MATERIALS AND METHODS;652
37.1.3;DISCUSSION;653
37.1.4;REFERENCES;654
37.2;Chapter 151. Perceived Tone evoked by Ultrasonic Complex Tone;656
37.2.1;INTRODUCTION;656
37.2.2;METHOD;656
37.2.3;RESULTS;657
37.2.4;DISCUSSION;658
37.2.5;CONCLUSIONS;658
37.2.6;REFERENCES;658
37.3;Chapter 152. Effect of Ultrasound to Timbre;660
37.3.1;INTRODUCTION;660
37.3.2;EXPERIMENTS;660
37.3.3;CONCLUSIONS;662
37.3.4;REFERENCES;662
37.4;Chapter 153. The Effects of High Energy Shock Waves on Cell Membranes and Mitochondria;664
37.4.1;INTRODUCTION;664
37.4.2;MATERIALS AND METHODS;664
37.4.3;RESULTS;665
37.4.4;DISCUSSION;665
37.4.5;REFERENCES;666
37.5;Chapter 154. The Combined Effects of High Energy Shock Waves and Cytostatic Drugs or Cytokines on Human Bladder Cancer Cells;668
37.5.1;INTRODUCTION;668
37.5.2;MATERIALS AND METHODS;668
37.5.3;RESULTS;669
37.5.4;DISCUSSION;670
37.5.5;REFERENCES;671
37.6;Chapter 155. Characterization of biological solutions from harmonic and anharmonic properties;672
37.6.1;INTRODUCTION;672
37.6.2;THEORIE;672
37.6.3;MEASUREMENT AND ANALYSE;673
37.6.4;DISCUSSION;674
37.6.5;CONCLUSION;675
37.6.6;REFERENCES;675
37.7;Chapter 156. An ultrasound pulse-echo technique for the thickness measurement of thin membranes;676
37.7.1;THEORY;676
37.7.2;NOISE;677
37.7.3;EXPERIMENTAL RESULTS;677
37.7.4;DISCUSSION;678
37.7.5;CONCLUSIONS;678
37.7.6;REFERENCES;678
38;Part XXX: Industrial applications: oral papers;680
38.1;Chapter 157. Frequency Range Extension Below 100 kHz and Above 50 MHz for CW Ultrasonic Absorption and Velocity Measurements in Liquids with Resonator Cells;680
38.1.1;INTRODUCTION;680
38.1.2;LOW FREQUENCY RANGE f < 500 KHZ;680
38.1.3;MEDIUM AND HIGH FREQUENCY RANGE f > 30 MHZ;681
38.1.4;ASPECTS OF CELL DESIGN AND MEASUREMENT TECHNIQUE;682
38.1.5;CONCLUSION;682
38.1.6;REFERENCES;682
38.2;Chapter 158. Ultrasonic International 93 Acoustic and Electromagnetic Barkhausen Emission as a Method for Characterising Material Condition;684
38.2.1;1. SOURCES OF BARKHAUSEN EMISSION;684
38.2.2;2. DETECTION OF ABE and EBE;685
38.2.3;3. MODELLING OF BARKHAUSEN EMISSION AS STOCHASTIC NOISE;685
38.2.4;4. EXCITATION AND DISPLAY OF BARKHAUSEN EMISSION;686
38.2.5;5. ACOUSTIC BARKHAUSEN EMISSION FROM POLYCRYSTALLINE NICKEL;686
38.2.6;6. APPLICATION OF BARKHAUSEN EMISSION FOR STRESS AND CASE-DEPTH MEASUREMENT;686
38.2.7;REFERENCES;687
38.2.8;FIGURES;687
38.3;Chapter 159. Advances in air-borne ultrasonic sensors;688
38.3.1;INTRODUCTION;688
38.3.2;CAPACITIVE TRANSDUCERS;688
38.3.3;ARRAYS;689
38.3.4;SIGNAL PROCESSING;690
38.3.5;APPLICATIONS;690
38.3.6;FURTHER DEVELOPMENTS;690
38.3.7;REFERENCES;691
38.4;Chapter 160. Analytical Modelling Of An Ultrasonic Motor;692
38.4.1;INTRODUCTION;692
38.4.2;ULTRASONIC MOTOR STRUCTURE;692
38.4.3;ANALYTICAL MODELLING;692
38.4.4;EXPERIMENTAL RESULTS;694
38.4.5;CONCLUSION;694
38.4.6;REFERENCES;694
38.5;Chapter 161. Micromachined Capacitance Transducers for Air–Borne Ultrasonics;696
38.5.1;INTRODUCTION;696
38.5.2;THEORY;696
38.5.3;EXPERIMENTAL and RESULTS;697
38.5.4;CONCLUSIONS;698
38.5.5;REFERENCES;698
38.6;Chapter 162. An Ultrasonic Atomizer using Squeeze Film;700
38.6.1;INTRODUCTION;700
38.6.2;PRINCIPLE AND SET UP;700
38.6.3;THEORETICAL INVESTIGATION;701
38.6.4;EXPERIMENTAL INVESTIGATION;702
38.6.5;ATOMIZATION PERFORMANCE;702
38.6.6;CONCLUSIONS;703
38.6.7;REFERENCES;703
39;Part XXXI: Industrial applications: poster papers;704
39.1;Chapter 163. Ultrasonic Butt Welding of Large Various Metal Plate Specimens;704
39.1.1;INTRODUCTION;704
39.1.2;ULTRASONIC BUTT WELDING SYSTEM AND SPECIMENS;704
39.1.3;WELDING CHARACTERISTICS OF THE SAME AND DIFFERENT METAL PLATES;705
39.1.4;CONCLUSION;706
39.2;Chapter 164. Ultrasonic Wire Bonding Using a High Frequency Complex Vibration Welding System;708
39.2.1;INTRODUCTION;708
39.2.2;ULTRASONIC WIRE BONDING SYSTEMS AND WELDING SPECIMENS;708
39.2.3;WELDING CHARACTERISTICS OF 60, 90 and 120 kHz COMPLEX VIBRATION WIRE BONDING SYSTEMS;709
39.2.4;CONCLUSION;710
39.3;Chapter 165. Ultrasonic Bending of Thin Metal Plates Using a Vibration Punch and a Vibration Die;712
39.3.1;INTRODUCTION;712
39.3.2;ULTRASONIC VIBRATION BENDING SYSTEM AND BENDING PLATE SPECIMENS;712
39.3.3;CHARACTERISTICS OF ULTRASONIC VIBRATION BENDING SYSTEM;713
39.3.4;CONCLUSION;714
39.4;Chapter 166. Characteristics of Tortional Vibrators;716
39.4.1;INTRODUCTION;716
39.4.2;ACOUSTIC CHARACTERISTICS OF TORTIONAL VIBRATORS;717
39.4.3;METHODS OF MEASUREMENT;718
39.4.4;RESULTS OF MEASUREMENT;718
39.4.5;CONCLUSION;718
39.5;Chapter 167. Ultrasonic pressing of plastic – film capacitor;720
39.5.1;INTRODUCTION;720
39.5.2;ULTRASONIC PRESS FORMING EQUIPMENT;720
39.5.3;FORM OF PRESSED MATERIALS;721
39.5.4;MEASUREMENT METHODS AND RESULTS;721
39.5.5;CONSIDERATIONS;721
39.5.6;CONCLUSIONS;722
39.5.7;REFERENCES;722
39.6;Chapter 168. Cavitation Effects in Ultrasonic Cleaning of Textiles;724
39.6.1;INTRODUCTION;724
39.6.2;EXPERIMENTAL;724
39.6.3;CONCLUSIONS;725
39.6.4;REFERENCES;726
39.6.5;ACKNOWLEDGMENTS;726
39.7;Chapter 169. Design of Ultrasonically Assisted Radial Dies by Validated Finite Element Models;728
39.7.1;INTRODUCTION;728
39.7.2;DIE VIBRATION CHARACTERISTICS;728
39.7.3;DIE REDESIGN BY STRUCTURAL MODIFICATION;730
39.7.4;CONCLUSION;730
39.7.5;REFERENCES;731
40;Part XXXII: Sonochemistry: oral papers;732
40.1;Chapter 170. New Aspect of Cavitation: Relation Between Sonoluminescence and Sonochemistry;732
40.1.1;INTRODUCTION;732
40.1.2;EXPERIMENTAL SET-UP;732
40.1.3;RESULTS AND DISCUSSION;733
40.1.4;CONCLUSION;734
40.1.5;REFERENCES;734
40.2;Chapter 171. Measurement of Liquid-solid Mass Transfer in Ultrasonic Reactor;736
40.2.1;INTRODUCTION;736
40.2.2;EXPERIMENTAL;737
40.2.3;RESULTS-DISCUSSION;738
40.2.4;CONCLUSION;739
40.2.5;REFERENCES;739
40.3;Chapter 172. Acoustic Signature Estimation Of The Cavitation Noise;740
40.3.1;INTRODUCTION;740
40.3.2;STUDY OF THE SPECTRAL EVOLUTION AS A FUNCTION OF GAIN;740
40.3.3;TIME-FREQUENCY ANALYSIS;741
40.3.4;CONCLUSION;742
40.4;Chapter 173. Dynamic Characterization Of High Frequency Ultrasonic Cavitation;744
40.4.1;INTRODUCTION;744
40.4.2;IMPULSE DYNAMIC CHARACTERIZATION;744
40.4.3;EXPERIMENTAL SET-UP DESCRIPTION;745
40.4.4;RELAXATION CONSTANT STUDY;745
40.4.5;CONCLUSION;746
41;Part XXXIII: Sonochemistry: poster papers;748
41.1;Chapter 174. EXPERIMENTAL CORRELATION BETWEEN CAVITATION NOISE SIGNATURES AND CHEMICAL REACTIVITY IN HOMOGENEOUS SONOCHEMISTRY;748
41.1.1;INTRODUCTION;748
41.1.2;EQUIPMENT AND INSTRUMENTATION;748
41.1.3;EXPERIMENTAL RESULTS;749
41.1.4;DISCUSSION;749
41.1.5;REFERENCES;750
41.2;Chapter 175. Building-up Time of Standing Waves in Composite Piezoelectric Resonators;752
41.2.1;INTRODUCTION;752
41.2.2;MATHEMATICAL DESCRIPTION OF THE TRANSIENT RESPONSE;752
41.2.3;EXPERIMENTAL SETUP;754
41.2.4;RESULTS;754
41.2.5;REFERENCES;754
41.3;Chapter 176. Conditions for Ultrasonic-Induced Cavitation in Water;756
41.3.1;INTRODUCTION;756
41.3.2;EQUATIONS AND NUMERICAL ANALYSIS;756
41.3.3;EXPERIMENTAL;757
41.3.4;DISCUSSION AND CONCLUSIONS;758
41.3.5;REFERENCES;758
41.3.6;ACKNOWLEDGEMENTS;758
41.4;Chapter 177. Thermosensitive Probe Based Technique of Local Investigation of ultrasonic reactors;760
41.4.1;INTRODUCTION;760
41.4.2;EQUIPMENT;760
41.4.3;RESULTS AND DISCUSSION;761
41.4.4;CONCLUSION;762
41.4.5;REFERENCES;762
41.5;Chapter 178. Study of Chemical Reactions under the Influence of Ultrasound;764
41.5.1;INTRODUCTION;764
41.5.2;EXPERIMENTS AND RESULTS;764
41.5.3;CONCLUSION;767
41.5.4;REFERENCES;767
42;Part XXXIV: Guided waves: oral papers;768
42.1;Chapter 179. Ultrasonic Velocity and Attenuation in Hardened Steel;768
42.1.1;INTRODUCTION;768
42.1.2;EXPERIMENTS;768
42.1.3;INVERSION ALGORITHM;769
42.1.4;CONCLUSION;769
42.1.5;REFERENCES;770
42.2;Chapter 180. Peculiarities of Stoneley Wave Generation on Division Boundaries between Different Structures;772
42.2.1;FORMULATION OF THE DIFFRACTION PROBLEM;772
42.2.2;THEORETICAL DEVELOPMENT;772
42.2.3;NUMERICAL RESULTS;773
42.2.4;REFERENCES;774
42.3;Chapter 181. ACOUSTIC BEAM REFLECTION FROM CYLINDRICAL FLUID-LOADED ELASTIC STRUCTURES;776
42.3.1;THEORETICAL SUMMARY;776
42.3.2;EXPERIMENTAL METHOD;777
42.3.3;RESULTS AND DISCUSSION;777
42.3.4;REFERENCES;779
43;Part XXXV: Guided waves: poster papers;780
43.1;Chapter 182. A combined transmission line matrix (TLM) and boundary element method (BEM) modelling of ultrasonic propagation in air;780
43.1.1;INTRODUCTION;780
43.1.2;THE TLM MODEL;780
43.1.3;VERIFICATION OF THE TL M MODEL;781
43.1.4;EXTENSION OF THE MODEL USING BEM;781
43.1.5;COMPARISON BETWEEN EXPERIMENTAL AND MODELLED RESULTS;782
43.1.6;APPLICATIONS AND FURTHER DEVELOPMENTS;782
43.1.7;REFERENCES;782
44;Part XXXVI: Neural works: oral papers;784
44.1;Chapter 183. Automatic Defects Classification System Using Spectral Analysis and Neural Networks;784
44.1.1;INTRODUCTION;784
44.1.2;EXPERIMENTAL METHOD;784
44.1.3;BACK-PROPAGATION TRAINING ALGORITHM;785
44.1.4;CONCLUSION;786
44.1.5;REFERENCES;786
44.2;Chapter 184. An Automatic 3-D Object Identification System Combining Ultrasonic Imaging with a Probability Competition Neural Network;788
44.2.1;INTRODUCTION;788
44.2.2;3-D ACOUSTICAL IMAGING;788
44.2.3;A PROBABILITY COMPETITION NEURAL NETWORK;789
44.2.4;RECOGNITION OF 3-D IMAGES;790
44.2.5;EXPERIMENTAL RESULTS;791
44.2.6;CONCLUSION;791
44.2.7;REFERENCES;791
44.3;Chapter 185. Application of a neural network to forecasting of a chaotic acoustic emission signal;792
44.3.1;THEORETICAL FUNDAMENTALS;792
44.3.2;EXPERIMENTS;794
44.3.3;REFERENCES;794
44.4;Chapter 186. Artificial Neural Network Processing of Lamb Wave Data for Adhesive Bond Characterisation;796
44.4.1;INTRODUCTION;796
44.4.2;TRANSDUCER SYSTEMS;797
44.4.3;TRANSMIT-RECEIVE SYSTEM;797
44.4.4;SIGNAL PROCESSING;797
44.4.5;RESULTS;798
44.4.6;DISCUSSION AND CONCLUSION;798
44.4.7;ACKNOWLEDGEMENTS;798
44.4.8;REFERENCES;799
45;Part XXXVII: Neural works: poster papers;800
45.1;Chapter 187. Applying Neural Networks to Ultrasonic Tomographic Inspection of Composite Materials;800
45.1.1;INTRODUCTION;800
45.1.2;EXPERIMENTAL APPARATUS;800
45.1.3;DATA PRE-PROCESSING;801
45.1.4;NEURAL NETWORKS;801
45.1.5;RESULTS;802
45.1.6;CONCLUSIONS;802
45.1.7;REFERENCES;802
46;Part XXXVIII: Lasers: oral papers;804
46.1;Chapter 188. Sectorial Beam Scanning in Solids by a Laser Ultrasonic Source Array;804
46.1.1;INTRODUCTION;804
46.1.2;ANALYSIS;804
46.1.3;EXPERIMENTAL SET UP;805
46.1.4;EXPERIMENTAL RESULTS;805
46.1.5;CONCLUSION;806
46.1.6;REFERENCES;806
46.2;Chapter 189. Optoacoustic Energy Conversion Efficiency during Laser Ablation;808
46.2.1;INTRODUCTION;808
46.2.2;EXPERIMENTS;808
46.2.3;DISCUSSION;809
46.2.4;CONCLUSION;810
46.2.5;REFERENCES;810
46.3;Chapter 190. Investigation of Orthogonal Two-Dimensional Acoustooptic Interaction in Anisotropic Media;812
46.3.1;INTRODUCTION;812
46.3.2;OPERATION PRINCIPLES AND REQUIREMENTS;812
46.3.3;PROBLEMS AND DESIGN CONSIDERATIONS;813
46.3.4;EXPERIMENTAL RESULTS;814
46.3.5;REFERENCES;814
46.4;Chapter 191. Ultrasonic Monitoring of Excimer Laser Beam Focussing;816
46.4.1;INTRODUCTION;816
46.4.2;EXPERIMENTAL;816
46.4.3;RESULTS;817
46.4.4;REFERENCES;818
47;Part XXXIX: Lasers: poster papers;820
47.1;Chapter 192. Far-field Broad - band Transducer Calibration by Means of Laser Ultrasound;820
47.1.1;INTRODUCTION;820
47.1.2;PRINCIPLES OF TRANSDUCER CALIBRATION WITH LIAS;820
47.1.3;CALIBRATION AGAINST STANDARD LOW-FREQUENtY HYDROPHONE;821
47.1.4;EXPERIMENTAL ARRANGEMENT AND RESULTS;821
47.1.5;CONCLUSION;822
47.1.6;ACKNOWLEDGEMENT;822
47.1.7;REFERENCES;822
47.2;Chapter 193. Laser-Excited Acoustic Pulses for Remote Material Inspection;824
47.2.1;INTRODUCTION;824
47.2.2;EXPERIMENTAL SETUP;824
47.2.3;CONCLUSION;826
47.2.4;REFERENCES;826
47.3;Chapter 194. Selective excitation of bulk and surface acoustic waves by rapid scanning of a laser interference fringe;828
47.3.1;INTRODUCTION;828
47.3.2;PRINCIPLE;828
47.3.3;EXPERIMENTAL VERIFICATION;829
47.3.4;DISCUSSION;829
47.3.5;CONCLUSION;830
47.3.6;REFERENCES;830
47.4;Chapter 195. Laser–Ultrasonic in Isotropic Polymers: Generation and Propagation;832
47.4.1;INTRODUCTION;832
47.4.2;PRINCIPLES AND METHOD OF MEASUREMENTS;832
47.4.3;RESULTS;833
47.4.4;CONCLUSIONS;833
47.4.5;REFERENCES;833
48;Part XI: Materials characterization: poster papers;836
48.1;Chapter 196. Mode Coupling in Liquid Bilayers;836
48.1.1;INTRODUCTION;836
48.1.2;THE COUPLING CONSTANT OF TWO COUPLED OSCILLATOR;836
48.1.3;THE COUPLING CONSTANT OF A LIQUID BILAYER;837
48.1.4;REFERENCES;838
48.2;Chapter 197. Mode Coupling in Al/polymer Bilayers;840
48.2.1;ANALYSIS OF THE DISPERSION CURVES;840
48.2.2;EXPERIMENTAL DATA;841
48.2.3;MODE COUPLING IN THE ALUMINUM/POLYMER BILAYERS;842
48.2.4;REFERENCES;842
48.3;Chapter 198. A Method for the Compensation of the Effects of Surface Cloth Impressions on Polar Backscatter Applied to Porous Epoxy and Biaxial Graphite/Epoxy Composites;844
48.3.1;INTRODUCTION;844
48.3.2;EXPERIMENTAL METHODS;844
48.3.3;RESULTS AND DISCUSSION;845
48.3.4;REFERENCES;845
48.3.5;ACKNOWLEDGMENTS;847
48.4;Chapter 199. The Newton-Raphson and Conjuguate Gradients algorithms for the acoustic characterization of thin films;848
48.4.1;Construction of the theoretical model;848
48.4.2;Measurement of the transmission coefficient T and identification of acoustical parameters of films;849
48.4.3;References;850
48.5;Chapter 200. Characterization of Powder Metallic Materials by Spectral Domain Based Ultrasonic Methods;852
48.5.1;INTRODUCTION;852
48.5.2;SIGNAL PROCESSING MODEL;852
48.5.3;SIGNAL PROCESSING;854
48.5.4;SIMULATIONS AND MEASUREMENTS;854
48.5.5;CONCLUDING REMARKS;855
48.5.6;REFERENCES;855
48.6;Chapter 201. Defect Characterisation in Carbon/Epoxy Plates via Signal Processing and Pattern Recognition Analysis of Ultrasonic A-Scan Signals;856
48.6.1;INTRODUCTION;856
48.6.2;EXPERIMENTAL PROCEDURE;856
48.6.3;SIGNAL PROCESSING AND PATTERN RECOGNITION [ 3 , 4 , 5 , 6 , 7 ];857
48.6.4;RESULTS;858
48.6.5;CONCLUSION;859
48.6.6;REFERENCES;859
48.7;Chapter 202. PHOTOACOUSTIC RESONANCE ABSORPTION SPECTRA OF LANGMUIR–BLODGETT FILMS;860
48.7.1;I. INTRODUCTION;860
48.7.2;II. EXPERIMENT;860
48.7.3;III. THEORY;863
48.7.4;IV. DISCUSSIONS;864
48.7.5;ACKNOWLEDGEMENT;865
48.7.6;REFERENCES;865
48.8;Chapter 203. Biot's Slow Wave in Porous Materials II: Resonant Scattering Phenomena;866
48.8.1;INTRODUCTION;866
48.8.2;EXPERIMENTAL METHOD;867
48.8.3;EXPERIMENTAL RESULTS;867
48.8.4;CONCLUSIONS;868
48.8.5;ACKNOWLEDGEMENTS;868
48.8.6;REFERENCES;868
49;Author Index;870
50;Keyword Index;873




