Buch, Englisch, 360 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 569 g
Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, June 19-29, 2004
Buch, Englisch, 360 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 569 g
Reihe: C.I.M.E. Foundation Subseries
ISBN: 978-3-540-77644-4
Verlag: Springer Berlin Heidelberg
Mathematical Control Theory is a branch of Mathematics having as one of its main aims the establishment of a sound mathematical foundation for the c- trol techniques employed in several di?erent ?elds of applications, including engineering,economy,biologyandsoforth. Thesystemsarisingfromthese- plied Sciences are modeled using di?erent types of mathematical formalism, primarily involving Ordinary Di?erential Equations, or Partial Di?erential Equations or Functional Di?erential Equations. These equations depend on oneormoreparameters thatcanbevaried,andthusconstitute thecontrol - pect of the problem. The parameters are to be chosen soas to obtain a desired behavior for the system. From the many di?erent problems arising in Control Theory, the C. I. M. E. school focused on some aspects of the control and op- mization ofnonlinear, notnecessarilysmooth, dynamical systems. Two points of view were presented: Geometric Control Theory and Nonlinear Control Theory. The C. I. M. E. session was arranged in ?ve six-hours courses delivered by Professors A. A. Agrachev (SISSA-ISAS, Trieste and Steklov Mathematical Institute, Moscow), A. S. Morse (Yale University, USA), E. D. Sontag (Rutgers University, NJ, USA), H. J. Sussmann (Rutgers University, NJ, USA) and V. I. Utkin (Ohio State University Columbus, OH, USA). We now brie?y describe the presentations. Agrachev’s contribution began with the investigation of second order - formation in smooth optimal control problems as a means of explaining the variational and dynamical nature of powerful concepts and results such as Jacobi ?elds, Morse’s index formula, Levi-Civita connection, Riemannian c- vature.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Geometrie Nicht-Euklidische Geometrie
Weitere Infos & Material
Geometry of Optimal Control Problems and Hamiltonian Systems.- Lecture Notes on Logically Switched Dynamical Systems.- Input to State Stability: Basic Concepts and Results.- Generalized Differentials, Variational Generators, and the Maximum Principle with State Constraints.- Sliding Mode Control: Mathematical Tools, Design and Applications.