Thangavelu | An Introduction to the Uncertainty Principle | Buch | 978-0-8176-4330-0 | sack.de

Buch, Englisch, Band 217, 174 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1000 g

Reihe: Progress in Mathematics

Thangavelu

An Introduction to the Uncertainty Principle

Hardy's Theorem on Lie Groups
2004
ISBN: 978-0-8176-4330-0
Verlag: Birkhäuser Boston

Hardy's Theorem on Lie Groups

Buch, Englisch, Band 217, 174 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1000 g

Reihe: Progress in Mathematics

ISBN: 978-0-8176-4330-0
Verlag: Birkhäuser Boston


In 1932 Norbert Wiener gave a series of lectures on Fourier analysis at the Univer­ sity of Cambridge. One result of Wiener's visit to Cambridge was his well-known text The Fourier Integral and Certain of its Applications; another was a paper by G. H. Hardy in the 1933 Journalofthe London Mathematical Society. As Hardy says in the introduction to this paper, This note originates from a remark of Prof. N. Wiener, to the effect that "a f and g [= j] cannot both be very small". The theo­ pair of transforms rems which follow give the most precise interpretation possible ofWiener's remark. Hardy's own statement of his results, lightly paraphrased, is as follows, in which f is an integrable function on the real line and f is its Fourier transform: x 2 m If f and j are both 0 (Ix1e- /2) for large x and some m, then each is a finite linear combination ofHermite functions. In particular, if f and j are x2 x 2 2 2 both O(e- / ), then f = j = Ae- /, where A is a constant; and if one x 2 2 is0(e- / ), then both are null.

Thangavelu An Introduction to the Uncertainty Principle jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Euclidean Spaces.- 1.1 Fourier transform on L1(?n).- 1.2 Hermite functions and L2 theory.- 1.3 Spherical harmonics and symmetry properties.- 1.4 Hardy’s theorem on ?n.- 1.5 Beurling’s theorem and its consequences.- 1.6 Further results and open problems.- 2 Heisenberg Groups.- 2.1 Heisenberg group and its representations.- 2.2 Fourier transform on Hn.- 2.3 Special Hermite functions.- 2.4 Fourier transform of radial functions.- 2.5 Unitary group and spherical harmonics.- 2.6 Spherical harmonics and the Weyl transform.- 2.7 Weyl correspondence of polynomials.- 2.8 Heat kernel for the sublaplacian.- 2.9 Hardy’s theorem for the Heisenberg group.- 2.10 Further results and open problems.- 3 Symmetric Spaces of Rank 1.- 3.1 A Riemannian space associated to Hn.- 3.2 The algebra of radial functions on S.- 3.3 Spherical Fourier transform.- 3.4 Helgason Fourier transform.- 3.5 Hecke-Bochner formula for the Helgason Fourier transform.- 3.6 Jacobi transforms.- 3.7 Estimating the heat kernel.- 3.8 Hardy’s theorem for the Helgason Fourier transform.- 3.9 Further results and open problems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.