Thomopoulos | Demand Forecasting for Inventory Control | E-Book | www.sack.de
E-Book

E-Book, Englisch, 188 Seiten

Thomopoulos Demand Forecasting for Inventory Control


2015
ISBN: 978-3-319-11976-2
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 188 Seiten

ISBN: 978-3-319-11976-2
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book describes the methods used to forecast the demands at inventory holding locations. The methods are proven, practical and doable for most applications, and pertain to demand patterns that are horizontal, trending, seasonal, promotion and multi-sku. The forecasting methods include regression, moving averages, discounting, smoothing, two-stage forecasts, dampening forecasts, advance demand forecasts, initial forecasts, all time forecasts, top-down, bottom-up, raw and integer forecasts, Also described are demand history, demand profile, forecast error, coefficient of variation, forecast sensitivity and filtering outliers. The book shows how the forecasts with the standard normal, partial normal and truncated normal distributions are used to generate the safety stock for the availability and the percent fill customer service methods. The material presents topics that people want and should know in the work place. The presentation is easy to read for students and practitioners; there is little need to delve into difficult mathematical relationships, and numerical examples are presented throughout to guide the reader on applications. Practitioners will be able to apply the methods learned to the systems in their locations, and the typical worker will want the book on their bookshelf for reference. The potential market is vast. It includes everyone in professional organizations like APICS, DSI and INFORMS; MBA graduates, people in industry, and students in management science, business and industrial engineering.

Nick T. Thomopoulos is professor emeritus at the Illinois Institute of Technology. He is the author of nine books, including: Applied Forecasting Methods, Prentice Hall, Strategic Inventory Management and Planning, Hitchcock, Essentials of Monte Carlo Simulation, Springer, and Production, Inventory and the Supply Chain, Atlantic Publishers. He has over 100 publications and presentations to his credit, and for many years, he has consulted in a wide variety of industries in the United States, Europe and Asia. Nick received honors over the years, such as the Rist Prize from the Military Operations Research Society, the Distinguished Professor Award in Bangkok, Thailand from the IIT Asian Alumni Association, and the Professional Achievement Award from the IIT Alumni Association.

Thomopoulos Demand Forecasting for Inventory Control jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Chapter-1;13
3.1;Demand Forecasting for Inventory Control;13
3.1.1;1.1 Introduction;13
3.1.1.1;1.1.1 Demand Forecasting;13
3.1.1.2;1.1.2 At the Beginning;14
3.1.1.3;1.1.3 Calculators;14
3.1.1.4;1.1.4 Data Processing;15
3.1.1.5;1.1.5 Forecasting Pioneers;15
3.1.1.6;1.1.6 Computer Era;16
3.1.1.7;1.1.7 Qualification;16
3.1.2;1.2 Chapter Summaries;17
4;Chapter-2;23
4.1;Demand History;23
4.1.1;2.1 Introduction;23
4.1.2;2.2 Customer Demand History for a Part;24
4.1.3;2.3 Demand-to-Date;24
4.1.4;2.4 Service Part Regular and Emergency Demands;25
4.1.5;2.5 New and Replenish Stock Demands for Retail Items at DC;25
4.1.6;2.6 Weekly Demands;26
4.1.7;2.7 445 Fiscal Months at Plants;26
4.1.8;2.8 Regular Demands and Other Requirements at DCs;27
4.1.9;2.9 Regular and Promotion Demands at DCs and Stores;28
4.1.10;2.10 Advance Demands;28
4.1.11;2.11 Demand Patterns;28
4.1.12;2.12 Return Demands;29
4.1.13;2.13 Outlier Demands;30
4.1.14;2.14 Coefficient of Variation;30
4.1.15;2.15 Demand Distribution;30
4.1.16;2.16 Cumulative Round Algorithm;31
4.1.17;2.17 Cumulative Forecasts;31
4.1.18;2.18 Inventory Profile;31
4.1.19;Summary;33
5;Chapter-3;34
5.1;Horizontal Forecasts;34
5.1.1;3.1 Introduction;34
5.1.2;3.2 Horizontal Forecasts;34
5.1.3;3.3 Raw Forecasts;35
5.1.4;3.4 Cumulative Rounding Algorithm;35
5.1.5;3.5 Estimate the Level;36
5.1.6;3.6 Raw Forecasts;36
5.1.7;3.7 Integer Forecasts;36
5.1.8;3.8 Standard Deviation and Cov;37
5.1.9;3.9 Horizontal Moving Average Forecasts;38
5.1.10;3.10 Standard Deviation and Cov;38
5.1.11;3.11 Horizontal Discount Forecasts;40
5.1.12;3.12 Standard Deviation and Cov;41
5.1.13;3.13 Horizontal Smoothing Forecasts;43
5.1.14;3.14 Standard Deviation;44
5.1.15;3.15 2-Stage Forecasts;45
5.1.16;3.16 Raw Lines to Integer Forecasts;46
5.1.17;3.17 Integer Lines to Integer Forecasts;49
5.1.18;Summary;50
6;Chapter-4;51
6.1;Trend Forecasts;51
6.1.1;4.1 Introduction;51
6.1.2;4.2 Trend Regression Forecast;51
6.1.3;4.3 Trend Discount Forecasts;55
6.1.4;4.4 Trend Smoothing Forecasts;59
6.1.5;4.5 Dampening;63
6.1.6;4.6 Linear Trend Forecast Model;63
6.1.7;4.7 Geometric Forecast Model;64
6.1.8;4.8 Maximum Forecast Model;65
6.1.9;4.9 Other Dampening Applications;67
6.1.10;Summary;67
7;Chapter-5;69
7.1;Seasonal Forecasts;69
7.1.1;5.1 Introduction;69
7.1.2;5.2 Seasonal Multiplicative Model;69
7.1.3;5.3 Revised Forecasts;75
7.1.4;5.4 Initialize with 12-Months of Demand History;76
7.1.5;5.5 Seasonal Additive Model;77
7.1.6;5.6 Initialize With 12-Months of Demand History;78
7.1.7;5.7 Revision Forecasts;78
7.1.8;Summary;79
8;Chapter-6;80
8.1;Promotion Forecasts;80
8.1.1;6.1 Introduction;80
8.1.2;6.2 Promotion Horizontal Model;80
8.1.3;6.3 Initialize Stage;81
8.1.4;6.4 Standard Deviation and Cov;84
8.1.5;6.5 Forecasts;84
8.1.6;6.6 Revision Stage;85
8.1.7;6.7 Unbiased Estimates;85
8.1.8;6.8 Promotion Trend Model;87
8.1.9;6.9 Initialize Stage;88
8.1.10;6.10 Standard Deviation and Cov;90
8.1.11;6.11 Revision Stage;93
8.1.12;6.12 Unbiased Estimates;93
8.1.13;Summary;96
9;Chapter-7;97
9.1;Multi-SKU Forecasts;97
9.1.1;7.1 Introduction;97
9.1.2;7.2 SKU Mean and Standard Deviation;98
9.1.3;7.3 Derivation of Binomial When n is a Random Variable;99
9.1.4;7.4 Top-Down Forecasting Method;100
9.1.5;7.5 Total Demand Forecasts;100
9.1.6;7.6 Location Portion of Demand;101
9.1.7;7.7 The Level by Location and Total;102
9.1.8;7.8 Standard Deviation by Location and Total;103
9.1.9;7.9 Cov by Location and Total;105
9.1.10;7.10 Bottom-Up Forecasting Method;105
9.1.11;7.11 Location j Forecasts;106
9.1.12;7.12 Bottom-Up Total Forecast;107
9.1.13;7.13 Total Forecast at Month 1;109
9.1.14;7.14 Horizontal SKU Forecasts;110
9.1.15;7.15 SKU Forecasts at the Distribution Center;111
9.1.16;7.16 SKU Forecasts at the Stores;113
9.1.17;Summary;114
10;Chapter-8;115
10.1;Forecast Sensitivity;115
10.1.1;8.1 Introduction;115
10.1.2;8.2 Cov by NMH when Horizontal Demands and Forecasts;115
10.1.3;8.3 Cov by NMH when Trend Demands and Forecasts;116
10.1.4;8.4 Cov by Parameter and Forecast Model when Horizontal Demands;118
10.1.5;8.5 Cov by Parameter and Forecast Model when Trend Demands;119
10.1.6;8.6 Cov by Parameter and Forecast Model when Seasonal Demands;120
10.1.7;8.7 Cov when Horizontal Demands with an Outlier;121
10.1.8;8.8 Cov when Trend Demands with an Outlier;123
10.1.9;Summary;125
11;Chapter-9;126
11.1;Filtering Outliers;126
11.1.1;9.1 Introduction;126
11.1.2;9.2 Horizontal Filtering;126
11.1.2.1;9.2.1 Horizontal Filtering Algorithm (HFA);127
11.1.3;9.3 Trend Filtering;132
11.1.3.1;9.3.1 Trend Filtering Algorithm (TFA);132
11.1.4;9.4 Seasonal Filtering;136
11.1.4.1;9.4.1 Seasonal Filtering Algorithm (SFA);136
11.1.5;9.5 Filtering Line Demands in Order Entry;139
11.1.6;9.6 Derivation of Mean and Standard Deviation of Line Demands;141
11.1.7;Summary;143
12;Chapter-10;144
12.1;Standard Normal and Truncated Normal Distributions;144
12.1.1;10.1 Introduction;144
12.1.2;10.2 Normal Distribution;144
12.1.3;10.3 Standard Normal Distribution;145
12.1.3.1;10.3.1 Probability Density;145
12.1.3.2;10.3.2 Cumulative Distribution Function;145
12.1.4;10.4 Partial Measures;146
12.1.4.1;10.4.1 Partial Expectation;146
12.1.4.2;10.4.2 Partial Standard Deviation;146
12.1.4.3;10.4.3 Partial When (x?>?xo);147
12.1.4.4;10.4.4 Table Measures;147
12.1.5;10.5 Truncated Normal Distribution;147
12.1.5.1;10.5.1 Truncated Mean and Variance;149
12.1.5.2;10.5.2 Some Useful Identities;149
12.1.5.3;10.5.3 Truncated Cov;150
12.1.5.4;10.5.4 Three Related Variables: z, t and w;152
12.1.5.5;10.5.5 Limits on w;153
12.1.5.6;10.5.6 Hastings Approximations;153
12.1.5.7;10.5.7 Approximation of F(z) from z;154
12.1.5.8;10.5.8 Approximation of z from F(z);154
12.1.6;Summary;155
13;Chapter-11;156
13.1;Safety Stock;156
13.1.1;11.1 Introduction;156
13.1.2;11.2 Control of the Inventory;156
13.1.3;11.3 Safety Stock when Normal Distribution;157
13.1.4;11.4 Service Level Method;158
13.1.5;11.5 Percent Fill Method;159
13.1.6;11.6 Sensitivity of Safety Stock with Cov;161
13.1.7;11.7 Service Level Safety Stock and Cov;161
13.1.8;11.8 Percent Fill Safety Stock and Cov;161
13.1.9;11.9 Safety Stock when Truncated Normal Distribution;163
13.1.10;11.10 Lead Time Demand;164
13.1.11;11.11 Service Level Methods and Truncated Normal;165
13.1.12;11.12 Percent Fill Method and Truncated Normal;167
13.1.13;Summary;170
14;Chapter-12;171
14.1;Auxiliary Forecasts;171
14.1.1;12.1 Introduction;171
14.1.2;12.2 Month-1 Forecasts and Demand-to-Date;171
14.1.3;12.3 Advance Demand;173
14.1.4;12.4 Initial Forecasts;175
14.1.5;12.5 All Time Forecasts;179
14.1.6;Summary;184
15;Bibliography;185
16;Index;186



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.