Traub / Vygen | Approximation Algorithms for Traveling Salesman Problems | Buch | 978-1-009-44541-2 | www.sack.de

Buch, Englisch, 444 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 787 g

Traub / Vygen

Approximation Algorithms for Traveling Salesman Problems


Erscheinungsjahr 2024
ISBN: 978-1-009-44541-2
Verlag: Cambridge University Press

Buch, Englisch, 444 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 787 g

ISBN: 978-1-009-44541-2
Verlag: Cambridge University Press


The Traveling Salesman Problem (TSP) is a central topic in discrete mathematics and theoretical computer science. It has been one of the driving forces in combinatorial optimization. The design and analysis of better and better approximation algorithms for the TSP has proved challenging but very fruitful. This is the first book on approximation algorithms for the TSP, featuring a comprehensive collection of all major results and an overview of the most intriguing open problems. Many of the presented results have been discovered only recently, and some are published here for the first time, including better approximation algorithms for the asymmetric TSP and its path version. This book constitutes and advances the state of the art and makes it accessible to a wider audience. Featuring detailed proofs, over 170 exercises, and 100 color figures, this book is an excellent resource for teaching, self-study, and further research.

Traub / Vygen Approximation Algorithms for Traveling Salesman Problems jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface; 1. Introduction; 2. Linear programming relaxations of the Symmetric TSP; 3. Linear programming relaxations of the Asymmetric TSP; 4. Duality, cuts, and uncrossing; 5. Thin trees and random trees; 6. Asymmetric Graph TSP; 7. Constant-factor approximation for the Asymmetric TSP; 8. Algorithms for subtour cover; 9. Asymmetric Path TSP; 10. Parity correction of random trees; 11. Proving the main payment theorem for hierarchies; 12. Removable pairings; 13. Ear-Decompositions, matchings, and matroids; 14. Symmetric Path TSP and T-tours; 15. Best-of-Many Christofides and variants; 16. Path TSP by dynamic programming; 17. Further results, related problems; 18. State of the art, open problems; Bibliography; Index.


Traub, Vera
Vera Traub has been Professor at the University of Bonn since 2023. Her research has received multiple awards, particularly her work on approximation algorithms for network design and the traveling salesman problem, including in 2023 the Maryam Mirzakhani New Frontiers Prize and the Heinz Maier-Leibnitz Prize. She is a member of the Hausdorff Center for Mathematics.

Vygen, Jens
Jens Vygen has been Professor at the University of Bonn since 2003. His work comprises many aspects of combinatorial optimization and its applications, notably to chip design and vehicle routing. He has co-authored two textbooks, organized several workshops and conferences, and has been co-editor of several scientific journals and books. He is a member of the Hausdorff Center for Mathematics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.