Verbeke / Molenberghs | Linear Mixed Models for Longitudinal Data | Buch | 978-1-4419-0299-3 | sack.de

Buch, Englisch, 570 Seiten, Format (B × H): 156 mm x 236 mm, Gewicht: 1810 g

Reihe: Springer Series in Statistics

Verbeke / Molenberghs

Linear Mixed Models for Longitudinal Data


2000. Auflage 2009
ISBN: 978-1-4419-0299-3
Verlag: Springer

Buch, Englisch, 570 Seiten, Format (B × H): 156 mm x 236 mm, Gewicht: 1810 g

Reihe: Springer Series in Statistics

ISBN: 978-1-4419-0299-3
Verlag: Springer


This paperback edition is a reprint of the 2000 edition.

This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Several variations to the conventional linear mixed model are discussed (a heterogeity model, conditional linear mixed models). This book will be of interest to applied statisticians and biomedical researchers in industry, public health organizations, contract research organizations, and academia. The book is explanatory rather than mathematically rigorous. Most analyses were done with the MIXED procedure of the SAS software package, and many of its features are clearly elucidated. However, some other commercially available packages are discussed as well. Great care has been taken in presenting the data analyses in a software-independent fashion.

Verbeke / Molenberghs Linear Mixed Models for Longitudinal Data jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Examples.- A Model for Longitudinal Data.- Exploratory Data Analysis.- Estimation of the Marginal Model.- Inference for the Marginal Model.- Inference for the Random Effects.- Fitting Linear Mixed Models with SAS.- General Guidelines for Model Building.- Exploring Serial Correlation.- Local Influence for the Linear Mixed Model.- The Heterogeneity Model.- Conditional Linear Mixed Models.- Exploring Incomplete Data.- Joint Modeling of Measurements and Missingness.- Simple Missing Data Methods.- Selection Models.- Pattern-Mixture Models.- Sensitivity Analysis for Selection Models.- Sensitivity Analysis for Pattern-Mixture Models.- How Ignorable Is Missing At Random?.- The Expectation-Maximization Algorithm.- Design Considerations.- Case Studies.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.