Wang / Chen / Hung | Membrane and Desalination Technologies | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 13, 716 Seiten

Reihe: Handbook of Environmental Engineering

Wang / Chen / Hung Membrane and Desalination Technologies


1. Auflage 2010
ISBN: 978-1-59745-278-6
Verlag: Humana Press
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 13, 716 Seiten

Reihe: Handbook of Environmental Engineering

ISBN: 978-1-59745-278-6
Verlag: Humana Press
Format: PDF
Kopierschutz: 1 - PDF Watermark



In this essential new volume, Volume 13: Membrane and Desalination Technologies, a panel of expert researchers provide a wealth of information on membrane and desalination technologies. An advanced chemical and environmental engineering textbook as well as a comprehensive reference book, this volume is of high value to advanced graduate and undergraduate students, researchers, scientists, and designers of water and wastewater treatment systems. This is an essential part of the Handbook of Environmental Engineering series, an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. Chapters adopt the series format, employing methods of practical design and calculation illustrated by numerical examples, including pertinent cost data whenever possible, and exploring in great detail the fundamental principles of the field. Volume 13: Membrane and Desalination Technologies is an essential guide for researchers, highlighting the latest developments in principles of membrane technology, membrane systems planning and design, industrial and municipal waste treatments, desalination requirements, wastewater reclamation, biofiltration, and more.

Wang / Chen / Hung Membrane and Desalination Technologies jetzt bestellen!

Weitere Infos & Material


1;Membrane and Desalination Technologies;3
1.1;Preface;5
1.2;Contents;9
1.3;Contributors;19
1.4;1: Membrane Technology: Past, Present and Future;21
1.4.1;1 Introduction;22
1.4.1.1;1.1 Membranes, Membrane Classifications and Membrane Configurations;22
1.4.1.2;1.2 Membrane Processes, Operation Modes and Membrane Fouling;23
1.4.2;2 Histrorical Developments of Membranes and Membrane Processes;25
1.4.2.1;2.1 Historical Background (Pre-1980s);25
1.4.2.2;2.2 Reverse Osmosis;27
1.4.2.3;2.3 Ultrafiltration;32
1.4.2.4;2.4 Nanofiltration;34
1.4.2.5;2.5 Microfiltration;34
1.4.2.6;2.6 Gas Separation;35
1.4.2.7;2.7 Pervaporation;36
1.4.2.8;2.8 Membrane Bioreactors;38
1.4.3;3 Current Status of Membrane Technology;39
1.4.3.1;3.1 RO for Seawater and Brackish Water Desalination and Water Reclamation;40
1.4.3.1.1;3.1.1 Seawater and Brackish Water Desalination;40
1.4.3.1.2;3.1.2 Contaminated Aquifer Water and Municipal Wastewater Reclamations;42
1.4.3.2;3.2 Applications of NF, UF and MF Membranes;46
1.4.3.2.1;3.2.1 NF Membranes;46
1.4.3.2.2;3.2.2 MF and UF Membranes for Water Purifications;47
1.4.3.3;3.3 MBRs for Wastewater Treatments;48
1.4.3.4;3.4 Gas Separation;49
1.4.3.5;3.5 PV and its Hybrid Systems;51
1.4.4;4 Future Prospects;53
1.4.4.1;4.1 Membranes for Water, Food and Biopharmaceutical Industries;53
1.4.4.2;4.2 Membranes for Refinery, Petrochemical and Natural Gas Industries;54
1.4.4.3;4.3 Challenges for the Membrane Industry;55
1.4.4.4;4.4 Promising Membrane Systems;56
1.4.5;5 Concluding Remarks;58
1.4.6;References;58
1.5;2: Preparation of Polymeric Membranes;66
1.5.1;1. Introduction;67
1.5.2;2. Membrane Classification;67
1.5.2.1;2.1. Isotropic Membranes;68
1.5.2.2;2.2. Anisotropic Membranes;69
1.5.2.3;2.3. Membrane Processes;70
1.5.2.3.1;2.3.1. Gas Separation and Pervaporation;70
1.5.2.3.2;2.3.2. Reverse Osmosis and Nanofiltration;71
1.5.2.3.3;2.3.3. Ultrafiltration and Microfiltration;71
1.5.2.3.4;2.3.4. Filter;71
1.5.3;3. Membrane Materials;72
1.5.3.1;3.1. Cellulose and Cellulose Acetate;72
1.5.3.2;3.2. Polysulfone;72
1.5.3.3;3.3. Polyethersulfone;74
1.5.3.4;3.4. Polyacrylonitrile;74
1.5.3.5;3.5. Polyvinylidene Fluoride;74
1.5.3.6;3.6. Polyetherimide;75
1.5.3.7;3.7. Polycarbonate;75
1.5.3.8;3.8. Polyamide;76
1.5.3.9;3.9. Polyimide;76
1.5.3.10;3.10. Polyether Ether Ketones;77
1.5.3.11;3.11. Poly(phthalazine ether sulfone ketone);78
1.5.3.12;3.12. Polyether Block Amide;78
1.5.4;4. Phase Inversion Membranes;78
1.5.4.1;4.1. Thermodynamics of the Polymer Solution;80
1.5.4.1.1;4.1.1. Thermally Induced Phase Separation;80
1.5.4.1.1.1;Glass Transition;81
1.5.4.1.1.2;Gelation Point;82
1.5.4.1.1.3;Vitrification and Coarsening Phenomenon;82
1.5.4.1.2;4.1.2. Diffusion Induced Phase Separation;83
1.5.4.1.2.1;Phase Diagram;83
1.5.4.1.2.2;Thermodynamic Description of the Polymer Solution;85
1.5.4.1.2.3;Linearized Cloud Point Curve Correlation;86
1.5.4.1.2.4;Approaching Ratio;88
1.5.4.1.2.5;Approaching Coagulation Ratio;88
1.5.4.2;4.2. Membrane Formation Processes;88
1.5.4.2.1;4.2.1. Delay Time;89
1.5.4.2.2;4.2.2. Gelation Time;89
1.5.4.2.3;4.2.3. Formation of Nascent Porous Membrane Morphologies;90
1.5.4.2.4;4.2.4. Vitrification of Membrane Morphology;90
1.5.4.2.5;4.2.5. Membrane Surface Formation of Porous Membranes;91
1.5.4.2.6;4.2.6. Macrovoid Formation;92
1.5.4.2.6.1;Influence of Approaching Ratio on Membrane Morphology;95
1.5.4.2.6.2;Influence of Membrane Thickness on Membrane Morphology;96
1.5.5;5. Preparation of Asymmetric Membranes by Phase Inversion Technique;97
1.5.5.1;5.1. Preparation of Hollow Fiber Membranes;97
1.5.5.1.1;5.1.1. Rheology of the Polymer Solution Inside the Spinneret;99
1.5.5.1.2;5.1.2. Nascent Hollow Fiber Membranes in the Air Gap;101
1.5.5.1.2.1;Viscoelasticity and Relaxation Time;101
1.5.5.1.2.2;Elongation Flow in the Air Gap;103
1.5.5.1.2.2.1;External tensile force;104
1.5.5.1.2.2.2;Free fall spinning;107
1.5.5.1.3;5.1.3. Dimension of the Hollow Fiber Membranes;109
1.5.5.2;5.2. Preparation of Flat Sheet Membranes;110
1.5.5.2.1;5.2.1. Hydrodynamics of the Polymer Solution at the Casting Window;111
1.5.6;6. Acronyms;112
1.5.7;7. Nomenclature;113
1.5.8;References;114
1.6;3: Advanced Membrane Fouling Characterization in Full-Scale Reverse Osmosis Processes;120
1.6.1;1 Introduction;121
1.6.2;2 Membrane Fouling and Control;122
1.6.2.1;2.1 Factors Affecting Membrane Fouling;122
1.6.2.2;2.2 Types of Fouling in RO Processes;124
1.6.2.3;2.3 Silt Density Index;125
1.6.2.4;2.4 Pretreatment;126
1.6.2.5;2.5 Membrane Cleaning;126
1.6.2.6;2.6 Challenges;127
1.6.3;3 Quantification of Fouling Potential of Feed Water;128
1.6.3.1;3.1 Desirable Attributes for Fouling Potential Parameter;128
1.6.3.2;3.2 An Inclusive Parameter for Fouling Potential;128
1.6.3.3;3.3 Membrane Device for Fouling Potential Measurement;130
1.6.3.4;3.4 Properties of Fouling Potential of Feed Water;131
1.6.4;4 Prediction of Fouling in Full-scale Reverse Osmosis Processes;135
1.6.4.1;4.1 Model Development;136
1.6.4.2;4.2 Fouling Development in a Long Membrane Channel;138
1.6.4.3;4.3 Influence of Feed Water Fouling Potential;143
1.6.4.4;4.4 Influence of Channel Length;143
1.6.4.5;4.5 Influence of Clean Membrane Resistance;144
1.6.4.6;4.6 Characteristic Pressure of a Long Membrane Channel;145
1.6.5;5 Membrane Fouling Quantification in Full-Scale Reverse Osmosis Processes;147
1.6.5.1;5.1 The Need for an Effective Fouling Characterization Method;147
1.6.5.2;5.2 Filtration Coefficient of a Long Membrane Channel;148
1.6.5.3;5.3 Fouling Index for a Long Membrane Channel;149
1.6.6;6 Conclusions;150
1.6.7;7 Acronyms;151
1.6.8;8 Nomenclature;151
1.6.9;References;152
1.7;4: Membrane Filtration Regulations and Determination of Log Removal Value;154
1.7.1;1. Introduction;155
1.7.2;2. Membranes for the Potable Water Industry;156
1.7.3;3. Long Term 2 ESWTR and Stage 2 DBPR Regulations;157
1.7.3.1;3.1. Long Term 2 Enhanced Surface Water Treatment Rule;157
1.7.3.2;3.2. Stage 2 Disinfectants and Disinfection Byproducts Rule;158
1.7.3.2.1;3.2.1. Initial Distribution System Evaluations;158
1.7.3.2.2;3.2.2. Compliance Determination and Schedule;158
1.7.3.2.3;3.2.3. Compliance Monitoring;158
1.7.3.2.4;3.2.4. Significant Excursion Evaluations;158
1.7.3.3;3.3. Requirements for Membrane Filtration under the LT2ESWTR;159
1.7.3.3.1;3.3.1. Definition of a Membrane Filtration Process;159
1.7.3.3.2;3.3.2. Challenge Testing;160
1.7.3.3.3;3.3.3. Direct Integrity Testing;160
1.7.3.3.4;3.3.4. Continuous Indirect Integrity Monitoring;160
1.7.3.4;3.4. Considering Existing Membrane Facilities under the LT2ESWTR;161
1.7.3.5;3.5. Membrane Terminology Used in the Guidance Manual;163
1.7.3.6;3.6. Summary of US EPA Regulatory Framework;164
1.7.3.6.1;3.6.1. Compliance with the Definition of Membrane Filtration;164
1.7.3.6.2;3.6.2. Establishment of Membrane Filtration Process´s Removal Efficiency Through a Product-Specific Challenge Test and Direct I;164
1.7.3.6.3;3.6.3. Requirement of Periodic Direct Integrity Testing and Continuous Indirect Integrity Monitoring During Operation;165
1.7.3.6.4;3.6.4. Summary of Rule Requirements;165
1.7.4;4. Challenge Testing: Determination of LRV;165
1.7.4.1;4.1. Core Requirements for Challenge Testing;166
1.7.4.2;4.2. Test Organization Qualification;167
1.7.4.3;4.3. General Procedure for Designing a Challenge Test Protocol;168
1.7.4.4;4.4. Nondestructive Performance Testing;169
1.7.4.5;4.5. Selection of Modules for Challenge Testing;171
1.7.4.6;4.6. Small-Scale Module Testing;172
1.7.4.7;4.7. Target Organisms and Challenge Particulates;172
1.7.4.7.1;4.7.1. Selecting a Target Organism;172
1.7.4.7.2;4.7.2. Surrogate Characteristics;173
1.7.4.7.3;4.7.3. Surrogates for Cryptosporidium;174
1.7.4.8;4.8. Challenge Test Solutions;177
1.7.4.8.1;4.8.1. Test Solution Water Quality;178
1.7.4.8.2;4.8.2. Test Solution Volume;179
1.7.4.8.3;4.8.3. Test Solution Concentration;180
1.7.4.8.4;4.8.4. Challenge Particulate Seeding Method;182
1.7.4.9;4.9. Challenge Test Systems;183
1.7.4.9.1;4.9.1. Test Apparatus;183
1.7.4.9.2;4.9.2. Test Operating Conditions;186
1.7.4.10;4.10. Sampling;189
1.7.4.10.1;4.10.1. Sampling Methods;189
1.7.4.10.2;4.10.2. Sample Port Design and Location;190
1.7.4.10.3;4.10.3. Process Monitoring;190
1.7.4.10.4;4.10.4. Sample Plan Development;191
1.7.4.11;4.11. Analysis and Reporting of Challenge Test Results;191
1.7.4.11.1;4.11.1. Calculation of Removal Efficiency;192
1.7.4.11.2;4.11.2. Statistical Analysis;193
1.7.4.11.3;4.11.3. Reporting;193
1.7.4.12;4.12. Retesting of Modified Membrane Modules;194
1.7.4.13;4.13. Grandfathering Challenge Test Data from Previous Studies;195
1.7.4.14;4.14. Summary of the US EPA Required Challenge Testing;197
1.7.5;5. Direct Integrity Testing;198
1.7.5.1;5.1. Core Requirements of Direct Integrity Testing;198
1.7.5.2;5.2. Resolution and Sensitivity;198
1.7.5.3;5.3. Summary of the US EPA Required Direct Integrity Testing;201
1.7.6;6. Continuous Indirect Integrity Monitoring;201
1.7.6.1;6.1. Core Requirements of Continuous Indirect Integrity Monitoring;201
1.7.6.2;6.2. Summary of the US EPA Required Continuous Indirect Integrity Monitoring;202
1.7.7;7. Design Example: Challenge Test Solution Design Scenario;203
1.7.8;8. Guidelines for Comparing Membrane Filtration with Other Water and Wastewater Treatment Processes for Giardia Cysts, Cryptosporidum Oocysts and Virus Removal;206
1.7.9;9. Case Study of Challenge Testing for Comparing Microfiltration and Continuously Backwashed Dual Sand Filtration Technologies;209
1.7.10;10. Acronyms;214
1.7.11;11. Nomenclature;215
1.7.12;References;216
1.8;5: Treatment of Industrial Effluents, Municipal Wastes, and Potable Water by Membrane Bioreactors;219
1.8.1;1. Introduction;220
1.8.1.1;1.1. General Introduction;220
1.8.1.2;1.2. Historical Development;220
1.8.1.2.1;1.2.1. Nanofiltration;221
1.8.1.2.2;1.2.2. Reverse Osmosis;221
1.8.1.3;1.3. Physical-Chemical Pretreatment Prior to Membrane Process;221
1.8.1.3.1;1.3.1. Biological Pretreatment Prior to Membrane Process;223
1.8.1.4;1.4. Physical-Chemical-Biological Pretreatment Prior to Membrane Process;223
1.8.1.5;1.5. Membrane Bioreactors Research and Engineering Applications;224
1.8.2;2. MBR Process Description;226
1.8.2.1;2.1. Membrane Bioreactor with Membrane Module Submerged in the Bioreactor;226
1.8.2.2;2.2. Membrane Bioreactor with Membrane Module Situated Outside the Bioreactor;227
1.8.2.3;2.3. MBR System Features;228
1.8.2.4;2.4. Membrane Module Design Considerations;230
1.8.3;3. Process Comparison;232
1.8.3.1;3.1. Similarity;232
1.8.3.2;3.2. Dissimilarity;233
1.8.3.2.1;3.2.1. Reactor, MLSS, and Space Requirement Comparison;233
1.8.3.2.2;3.2.2. Effluent Quality Comparison;233
1.8.3.2.3;3.2.3. Cost Comparison and Water Recycle Considerations;233
1.8.3.2.4;3.2.4. Waste Treatment Consideration;234
1.8.3.2.5;3.2.5. Summary;234
1.8.4;4. Process Applications;235
1.8.4.1;4.1. Industrial Wastewater Treatment;235
1.8.4.2;4.2. Municipal Wastewater and Leachate Treatments;235
1.8.5;5. Practical Examples;236
1.8.5.1;5.1. Example 1: Dairy Industry;236
1.8.5.1.1;5.1.1. Solution;236
1.8.5.2;5.2. Example 2: Landfill Leachate Treatment;237
1.8.5.2.1;5.2.1. Solution;238
1.8.5.3;5.3. Example 3: Coffee Industry;239
1.8.5.3.1;5.3.1. Solution;240
1.8.5.4;5.4. Example 4: Cosmetics Industry;241
1.8.5.4.1;5.4.1. Solution;241
1.8.6;6. Conclusions;242
1.8.6.1;6.1. Industrial Applications;242
1.8.6.2;6.2. Municipal Applications;242
1.8.6.3;6.3. Acknowledgments;243
1.8.6.4;6.4. Commercial Availability;243
1.8.7;7. Recent Advances in Membrane Bioreactor Technology;243
1.8.7.1;7.1. Electrodialysis Membrane Bioreactor for Product Separation and pH Control;243
1.8.7.2;7.2. Ethanol Production in Membrane Distillation Bioreactor;243
1.8.7.3;7.3. Denitrification of Nitrate-Contaminated Drinking Water Using Membrane Bioreactor;243
1.8.7.4;7.4. Treating Contaminated Surface Water for Drinking Water Production Using Membrane Bioreactor;244
1.8.7.5;7.5. Removing Bromate from Drinking Water Using the Ion Exchange Membrane Bioreactor;244
1.8.7.6;7.6. New Membrane Bioreactor Design and Applications;245
1.8.7.7;7.7. Full-Scale Membrane Bioreactor for Wastewater Treatment: Carnation Wastewater Treatment Plant;246
1.8.7.8;7.8. Bioremediation Using Membrane Bioreactor-Sequencing Batch Bioreactor;246
1.8.7.9;7.9. Membrane Bioreactor Design;247
1.8.7.10;7.10. Using Flotation as a Pretreatment to Membrane Processes;247
1.8.7.11;7.11. Full-Scale Membrane Bioreactor Technology for Water Reclamation;247
1.8.8;References;250
1.9;6: Treatment of Food Industry Foods and Wastes by Membrane Filtration;255
1.9.1;1. Introduction;256
1.9.2;2. Membrane Processes, Modules, and Equipment;257
1.9.2.1;2.1. Membrane Processes;257
1.9.2.2;2.2. Membrane Modules and Equipment;258
1.9.2.3;2.3. Cost of Membrane Filtration;263
1.9.3;3. Operational Problems and Engineering Solutions;265
1.9.3.1;3.1. Membrane Scaling;265
1.9.3.2;3.2. Metal Oxides Fouling;266
1.9.3.3;3.3. Colloidal Fouling;266
1.9.3.4;3.4. Biological Fouling;266
1.9.3.5;3.5. Cleaning Agent Fouling;266
1.9.4;4. Membrane Filtration System;267
1.9.4.1;4.1. Basic Membrane System;267
1.9.4.2;4.2. Uniform Transmembrane Pressure (UTP) System;268
1.9.5;5. Applications of Membrane Technology in the Food Industry;268
1.9.5.1;5.1. Production of Dairy Products Using MF, UF, and RO;268
1.9.5.2;5.2. Production of Fruit and Tomato Juices Using MF, UF, and RO;271
1.9.5.3;5.3. Removal of Salts from Food Processing Water Streams Using NF;273
1.9.5.4;5.4. Recovery of Potato Starch Effluent Using RO;274
1.9.5.5;5.5. Production of Yeast by Aerobic Fermentation, MF and NF;275
1.9.5.6;5.6. Production of Cyclodextrin from Starch Using CMR, UF, and NF;276
1.9.5.7;5.7. Production of Ethanol from Food Materials Using UF, Fermentation, CMR, and MF;280
1.9.5.8;5.8. Removal of Volatile Organic Compounds from Process Water by Pervaporation;282
1.9.5.9;5.9. Application of Advanced Ion Exchange Membrane Processes in Food Processing;282
1.9.6;6. Nonfood Applications of Membrane Technology in the Food Industry;283
1.9.6.1;6.1. Nutrient Removal from Wastewater Streams;283
1.9.6.2;6.2. Organics Removal from Wastewater Streams;283
1.9.6.2.1;6.2.1. Effect of Molecular Size and Shape;284
1.9.6.2.2;6.2.2. Effect of Hydrogen Bonding;284
1.9.7;7. Nomenclature;285
1.9.8;References;285
1.10;7: Membrane Separation: Basics and Applications;288
1.10.1;1 Introduction;289
1.10.2;2 Membrane and Membrane Separation Processes for Water Treatment;290
1.10.2.1;2.1 Basics of Membrane and Membrane Separation System;290
1.10.2.2;2.2 Membrane Separation Processes for Water Treatment;291
1.10.2.2.1;2.2.1 Microfiltration;291
1.10.2.2.2;2.2.2 Ultrafiltration;294
1.10.2.2.3;2.2.3 Nanofiltration;295
1.10.2.2.4;2.2.4 Reverse Osmosis;296
1.10.2.2.5;2.2.5 Other Membrane Technologies;298
1.10.2.3;2.3 Case Studies on Membrane Applications in Water Treatment;299
1.10.2.3.1;2.3.1 Case 1: Desalination of Seawater by RO;299
1.10.2.3.2;2.3.2 Case 2: Removal of Salts from Food Processing Water Stream by NF;300
1.10.2.3.3;2.3.3 Case 3: Nutrient Removal from Wastewater Streams by RO;301
1.10.3;3 Membrane Materials: Preparation and Modification;302
1.10.3.1;3.1 Membrane Materials;302
1.10.3.2;3.2 Types of Membrane and Their Formation;302
1.10.3.2.1;3.2.1 Introduction;302
1.10.3.2.2;3.2.2 Phase Inversion Membranes;302
1.10.3.2.3;3.2.3 Spinning of Hollow Fibres;303
1.10.3.2.4;3.2.4 Membrane Modification;304
1.10.4;4 Membrane Characterization;306
1.10.4.1;4.1 Porous Membrane;306
1.10.4.2;4.2 Non-porous Membrane;307
1.10.5;5 Mass Transport in Membranes;307
1.10.5.1;5.1 The Solution-Diffusion Model;308
1.10.5.2;5.2 The Pore Model;313
1.10.6;6 Membrane Module and Process Design;314
1.10.6.1;6.1 Introduction;314
1.10.6.2;6.2 Typical Membrane Modules;315
1.10.6.2.1;6.2.1 Plate-and-Frame Module;315
1.10.6.2.2;6.2.2 Spiral-Wound Module;315
1.10.6.2.3;6.2.3 Tubular Module;317
1.10.6.2.4;6.2.4 Hollow-Fibre Module;317
1.10.6.3;6.3 Design Considerations;319
1.10.6.3.1;6.3.1 System Design;319
1.10.6.3.2;6.3.2 Nanofiltration and Reverse Osmosis;321
1.10.6.4;6.4 Engineering Design;323
1.10.6.4.1;6.4.1 Reverse Osmosis;323
1.10.6.4.2;6.4.2 Microfiltration and Ultrafiltration;327
1.10.6.5;6.5 Membrane Testing;328
1.10.6.6;6.6 Economics of Membrane Processes;328
1.10.7;7 Membrane Fouling and Prevention;329
1.10.7.1;7.1 Mechanisms;329
1.10.7.2;7.2 Feed Pre-treatment;332
1.10.7.2.1;7.2.1 Conventional Pre-treatment;332
1.10.7.2.2;7.2.2 Membrane Pre-treatment;333
1.10.8;8 Membrane Cleaning and Flux Restoration;335
1.10.8.1;8.1 Chemical Cleaning Methods;336
1.10.8.2;8.2 Physical Cleaning Methods;339
1.10.9;9 Recent Advances in Membrane Separation;340
1.10.9.1;9.1 Membrane Bioreactors for Wastewater Treatment;340
1.10.9.2;9.2 Gas Separation;341
1.10.10;10 Summary;341
1.10.11;11 Abbreviations;342
1.10.12;12 Nomenclature;342
1.10.13;13 Subscripts;344
1.10.14;Acknowledgement;344
1.10.15;References;344
1.11;8: Membrane Systems Planning and Design;350
1.11.1;1 Introduction;351
1.11.2;2 Pilot Testing;351
1.11.2.1;2.1 Planning;352
1.11.2.1.1;2.1.1 Process Considerations;352
1.11.2.1.2;2.1.2 Screening and System Selection;353
1.11.2.1.3;2.1.3 Scheduling;354
1.11.2.2;2.2 Testing Objectives;355
1.11.2.2.1;2.2.1 Membrane Flux Optimization;356
1.11.2.2.2;2.2.2 Backwash Optimization;357
1.11.2.2.3;2.2.3 Chemical Cleaning Optimization;358
1.11.2.3;2.3 Testing and Monitoring;360
1.11.2.3.1;2.3.1 Operational Parameter Monitoring;360
1.11.2.3.2;2.3.2 Water Quality Monitoring;360
1.11.2.3.3;2.3.3 Microbial Monitoring;362
1.11.2.3.4;2.3.4 Integrity Testing;363
1.11.2.4;2.4 Report Development;363
1.11.3;3 Operational Unit Processes;364
1.11.3.1;3.1 Pretreatment;364
1.11.3.1.1;3.1.1 Prefiltration;364
1.11.3.1.2;3.1.2 Chemical Conditioning;365
1.11.3.2;3.2 Backwashing;367
1.11.3.3;3.3 Chemical Cleaning;368
1.11.3.4;3.4 Integrity Testing;370
1.11.3.5;3.5 Post-Treatment;371
1.11.4;4 Basic Principles of System Design and Operation;372
1.11.4.1;4.1 General Concepts;372
1.11.4.2;4.2 MF, UF, and MCF Processes;373
1.11.4.3;4.3 NF and RO Processes;376
1.11.4.4;4.4 Hydraulic Configurations;377
1.11.4.4.1;4.4.1 Deposition Mode;379
1.11.4.4.2;4.4.2 Suspension Mode;380
1.11.5;5 System Design Considerations;381
1.11.5.1;5.1 Membrane Flux;383
1.11.5.2;5.2 Water Quality;384
1.11.5.2.1;5.2.1 Silt Density Index;384
1.11.5.2.2;5.2.2 Turbidity;385
1.11.5.2.3;5.2.3 Organic Carbon;386
1.11.5.2.4;5.2.4 Dissolved Solids;386
1.11.5.3;5.3 Temperature Compensation;387
1.11.5.4;5.4 Cross-Connection Control;390
1.11.5.5;5.5 System Reliability;392
1.11.6;6 Residuals Treatment and Disposal;393
1.11.6.1;6.1 Backwash Residuals;394
1.11.6.2;6.2 Chemical Cleaning Residuals;395
1.11.6.3;6.3 Concentrate;396
1.11.7;7 Initial Start-up;397
1.11.7.1;7.1 Temporary System Interconnections;397
1.11.7.2;7.2. Flushing and Testing Without Membranes;398
1.11.7.3;7.3 Membrane Installation;399
1.11.7.4;7.4 System Disinfection;399
1.11.7.4.1;7.4.1 Chlorine-Tolerant Membranes;400
1.11.7.4.2;7.4.2 Chlorine-Intolerant Membranes;400
1.11.7.5;7.5 Initial Direct Integrity Testing;400
1.11.7.6;7.6 Acceptance Testing;401
1.11.7.7;7.7 Operator Training;402
1.11.8;8 Acronyms;402
1.11.9;9 Nomenclature;403
1.11.10;References;404
1.12;9: Adsorption Desalination: A Novel Method;407
1.12.1;1. Introduction;408
1.12.1.1;1.1. Description of Sorption Processes;409
1.12.1.2;1.2. Adsorption Equilibrium;409
1.12.1.3;1.3. Adsorption Kinetics;410
1.12.1.4;1.4. Heat of Adsorption;413
1.12.1.5;1.5. Classification of Thermally Driven Sorption Systems;416
1.12.1.6;1.6. Basic Closed Adsorption Cycles;416
1.12.2;2. Adsorption Characteristics of Silica Gel-Water Pair;418
1.12.2.1;2.1. Physical Adsorption of Silica Gel;418
1.12.2.2;2.2. Porous Properties of Various Silica Gels;420
1.12.2.2.1;2.2.1. Nitrogen Adsorption Experiment;420
1.12.2.2.2;2.2.2. Porous Properties of Silica Gels;421
1.12.3;3. Isothermal Adsorption of Water Vapor onto Two Types of Silica Gels;422
1.12.3.1;3.1. Constant Volume-Variable Pressure Test Facility;422
1.12.3.2;3.2. TGA System: Experimental Set-Up and Procedure;425
1.12.3.3;3.3. Adsorption Isotherms of Silica Gel-Water Pair;426
1.12.4;4. Thermally Driven Adsorption Desalination;429
1.12.4.1;4.1. Laboratory Scale Prototype Testing;429
1.12.4.2;4.2. Definitions and Modeling;431
1.12.4.3;4.3. Specific Daily Production Vs. Cycle Time;434
1.12.4.4;4.4. Effect of Heat Source Temperature on the Cycle Performance;435
1.12.4.5;4.5. Effect of Cooling and Chilled Water Temperature on the Cycle Performance;435
1.12.4.6;4.6. Adsorption Desalination Plant with Heat Recovery;436
1.12.5;5. Recent Improvements of Adsorption Desalination Plant;437
1.12.5.1;5.1. Adsorption Desalination Operation at a Relatively Higher Evaporation Temperature;437
1.12.5.2;5.2. Adsorption Desalination Plant with Mass Recovery;439
1.12.6;6. Design for Large Commercial Adsorption Desalination Plant;440
1.12.7;7. Closure;445
1.12.8;Acknowledgments;344
1.12.9;References;445
1.13;10: Membrane Processes for Reclamation of Municipal Wastewater;448
1.13.1;1. Introduction;449
1.13.2;2. Process Design;450
1.13.2.1;2.1. Typical Flow Schematics of Membrane Processes;450
1.13.2.2;2.2. Applications of Reclaimed Water;451
1.13.2.3;2.3. Characterization of Membrane and Membrane System Performance;451
1.13.3;3. UF for Tertiary Treatment of Municipal Wastewater;452
1.13.3.1;3.1. Background;452
1.13.3.2;3.2. Description of Overall Process;453
1.13.3.2.1;3.2.1. Plant Process;453
1.13.3.2.2;3.2.2. Hollow Fiber Unit and Trial Runs;453
1.13.3.3;3.3. Plant Performance;454
1.13.3.3.1;3.3.1. Permeate Quality of UF Membrane;454
1.13.3.3.2;3.3.2. Transmembrane Pressure as a Function of Time;456
1.13.3.3.3;3.3.3. Normalized Flux as a Function of Time;458
1.13.3.3.4;3.3.4. Overall Process Consideration;458
1.13.3.4;3.4. Conclusions;460
1.13.4;4. MF-RO for Reclamation of the Secondary Domestic Effluent;460
1.13.4.1;4.1. Background;460
1.13.4.2;4.2. Description of Overall Process;461
1.13.4.2.1;4.2.1. Plant Process;461
1.13.4.2.2;4.2.2. Trial Runs;461
1.13.4.3;4.3. Plant Performance;462
1.13.4.3.1;4.3.1. Normalized Flux and Rejection of the RO Membranes as a Function of Time;463
1.13.4.4;4.4. Conclusions;465
1.13.5;5. TOC Removal in Reclamation of Municipal Wastewater by RO;465
1.13.5.1;5.1. Background;465
1.13.5.2;5.2. Description of Overall Process;466
1.13.5.3;5.3. Plant Performance;466
1.13.5.4;5.4. Conclusions;468
1.13.6;6. New Option of MBR-RO for Reclamation of Municipal Wastewater;468
1.13.6.1;6.1. Background;468
1.13.6.2;6.2. Description of Overall Process;469
1.13.6.3;6.3. Plant Performance;471
1.13.6.3.1;6.3.1. Stability of the Plant Operation;471
1.13.6.3.2;6.3.2. Online Monitoring of RO Permeate TOC;472
1.13.6.3.3;6.3.3. RO Permeate Quality at Different Fluxes;472
1.13.6.3.4;6.3.4. Comparison of the MBR-RO Process to the ASP-MF-RO Process;474
1.13.6.4;6.4. Conclusions;475
1.13.7;7. Reclamation of a Mixed Sewage Effluent Using UF-RO;476
1.13.7.1;7.1. Background;476
1.13.7.2;7.2. Description of Overall Process;477
1.13.7.2.1;7.2.1. Plant Process;477
1.13.7.2.2;7.2.2. UF and RO Units;478
1.13.7.2.3;7.2.3. Trial Runs;478
1.13.7.3;7.3. Plant Performance;479
1.13.7.3.1;7.3.1. Characteristics of the Raw Feed Water;479
1.13.7.3.2;7.3.2. Monitoring of Conductivity and pH Values in the Process;479
1.13.7.3.3;7.3.3. Monitoring of TOC in the Process;482
1.13.7.3.4;7.3.4. Analytical Results of Product Quality;483
1.13.7.4;7.4. Conclusions;484
1.13.8;8. Recent RandD;484
1.13.8.1;8.1. Membrane Development;485
1.13.8.2;8.2. Membrane Processes;485
1.13.9;9. Acronyms;486
1.13.10;10. Nomenclature;487
1.13.11;References;487
1.14;11: Potable Water Biotechnology, Membrane Filtration and Biofiltration;492
1.14.1;1. Introduction;493
1.14.2;2. Treatment of Drinking Water using Filtration and Biotechnology;493
1.14.2.1;2.1. Turbidity Removal;493
1.14.2.2;2.2. Desalination;494
1.14.2.3;2.3. Control of Disinfection By-Products;494
1.14.2.4;2.4. Inactivation and Removal of Targeted Microorganisms;495
1.14.2.5;2.5. Nitrate Removal from Drinking Water;496
1.14.2.5.1;2.5.1. Biological Nitrate Removal;497
1.14.2.5.2;2.5.2. Biological Denitrification;497
1.14.3;3. Types of Filtration Processes for Water Purification;499
1.14.3.1;3.1. Biological Slow Sand Filtration;499
1.14.3.2;3.2. Microfiltration;500
1.14.3.3;3.3. Ultrafiltration;501
1.14.3.4;3.4. Nanofiltration;501
1.14.3.5;3.5. Reverse Osmosis;502
1.14.4;4. Combination of Biotechnology and Filtration Technology;503
1.14.4.1;4.1. Biofiltration;503
1.14.4.1.1;4.1.1. General Description;503
1.14.4.1.2;4.1.2. Application of Biofiltration in Natural Organic Matter Removal;505
1.14.4.1.3;4.1.3. Application of Fixed-Film Bioreactor in Nitrate Removal;507
1.14.4.2;4.2. Membrane Bioreactor;509
1.14.4.3;4.3. Ion-Exchange Membrane Bioreactor;511
1.14.4.4;4.4. Biological Activated Carbon Adsorption: Biofilm;513
1.14.5;5. US Epa Studies on Dbp Control Through Biofiltration;514
1.14.5.1;5.1. Pilot-Scale Study, Shreveport, LA;515
1.14.5.2;5.2. Bench-Scale Studies;516
1.14.5.3;5.3. Pilot-Scale Study, Cincinnati, OH;518
1.14.5.4;5.4. Five-Month Pilot-Scale Study;522
1.14.5.4.1;5.4.1. Impact of Temperature;524
1.14.5.4.2;5.4.2. Full-Scale Evaluation of Temperature Effects;524
1.14.5.5;5.5. Modeling Biological PM Control;525
1.14.5.6;5.6. Discussion;529
1.14.6;6. Design Examples;529
1.14.7;7. Nomenclature;532
1.14.8;References;532
1.15;12: Desalination of Seawater by Thermal Distillation and Electrodialysis Technologies;539
1.15.1;1. Introduction;539
1.15.2;2. Thermal Distillation;545
1.15.2.1;2.1. Introduction;545
1.15.2.2;2.2. Working Mechanisms;546
1.15.2.3;2.3. Multistage Flash Distillation;548
1.15.2.4;2.4. Multieffect Distillation;549
1.15.2.5;2.5. Vapor Compression;550
1.15.2.6;2.6. Solar Desalination;550
1.15.2.7;2.7. Important Issues in Design (OandM);553
1.15.2.7.1;2.7.1. Thermal Discharge;553
1.15.2.7.2;2.7.2. Materials for Construction;554
1.15.2.7.3;2.7.3. Energy for Operation;554
1.15.2.7.4;2.7.4. Characteristics of Raw Water;554
1.15.2.7.5;2.7.5. Final Disposal of Waste Brine;554
1.15.3;3. Electrodialysis;554
1.15.3.1;3.1. Introduction;554
1.15.3.2;3.2. Mechanisms;555
1.15.3.3;3.3. Important Issues in Design;556
1.15.3.3.1;3.3.1. Pretreatment System;556
1.15.3.3.2;3.3.2. Membrane Stack;557
1.15.3.3.3;3.3.3. Ion-Exchange Membrane;558
1.15.3.3.3.1;3.3.3.1 Homogeneous Membrane;559
1.15.3.3.3.2;3.3.3.2 Heterogeneous Membrane;559
1.15.3.3.4;3.3.4. Solution Pumping System;559
1.15.3.3.5;3.3.5. Posttreatment;559
1.15.3.4;3.4. Electrodialysis Reversal;559
1.15.3.5;3.5. Electrodeionization;562
1.15.4;4. Reverse Osmosis;563
1.15.5;5. Energy;565
1.15.6;6. Environmental Aspect of Desalination;566
1.15.7;7. Recent Advances of Thermal Distillation and Electrodialysis for Desalination;568
1.15.7.1;7.1. Membrane Distillation;568
1.15.7.2;7.2. Photovoltaic Electrodialysis;569
1.15.7.3;7.3. Future Study on Desalination Technologies;569
1.15.8;8. Nomenclature;569
1.15.9;References;570
1.16;13: Desalination of Seawater by Reverse Osmosis;573
1.16.1;1. Introduction;574
1.16.2;2. Membrane Filtration Theory;574
1.16.2.1;2.1. Osmosis and RO;574
1.16.2.2;2.2. Membranes;577
1.16.2.2.1;2.2.1. CA Membranes;577
1.16.2.2.2;2.2.2. TF Membranes;577
1.16.2.3;2.3. Membrane Filtration Theory;579
1.16.2.3.1;2.3.1. Membrane Transport;579
1.16.2.3.2;2.3.2. Irreversible Thermodynamics Models;579
1.16.2.3.3;2.3.3. Homogeneous Models;580
1.16.2.3.3.1;Example;580
1.16.2.3.3.2;Solution;581
1.16.2.3.4;2.3.4. Solution-Diffusion-Imperfection Model;582
1.16.2.3.5;2.3.5. Preferential Sorption Capillary Flow Model;582
1.16.2.3.6;2.3.6. Finely Porous Model;583
1.16.2.3.7;2.3.7. Surface Force Pore Flow Model;583
1.16.2.4;2.4. Concentration Polarization;583
1.16.2.5;2.5. Compaction;584
1.16.3;3. Membrane Modules and Plant Configuration;585
1.16.3.1;3.1. Membrane Modules;585
1.16.3.1.1;3.1.1. Hollow Fiber;585
1.16.3.1.2;3.1.2. Spiral-Wound;586
1.16.3.1.3;3.1.3. Tubular Module;587
1.16.3.1.4;3.1.4. Flat Configuration;588
1.16.3.2;3.2. Plant Configuration of Membrane Modules;589
1.16.3.2.1;3.2.1. Plant Configuration;589
1.16.3.2.1.1;Feed Water Pressure;589
1.16.3.2.1.2;Membrane Type and Pore Size;590
1.16.3.2.1.3;Pretreatment Requirements;590
1.16.3.2.1.4;Product Conversion Rate;590
1.16.3.2.1.5;Energy Saving;590
1.16.3.2.2;3.2.2. Energy Saving;591
1.16.4;4. Pretreatment and Cleaning of Membrane;592
1.16.4.1;4.1. Mechanisms of Membrane Fouling;592
1.16.4.2;4.2. Feed Pretreatment;594
1.16.4.2.1;4.2.1. Conventional Pretreatment;595
1.16.4.2.2;4.2.2. Disinfection;595
1.16.4.2.3;4.2.3. Coagulation/Flocculation;596
1.16.4.2.4;4.2.4. Sedimentation and Filtration;596
1.16.4.2.5;4.2.5. Dechlorination;596
1.16.4.2.6;4.2.6. Scale Control;597
1.16.4.2.7;4.2.7. Membrane Pretreatment;597
1.16.4.3;4.3. Membrane Cleaning and Regeneration;600
1.16.4.3.1;4.3.1. Chemical Cleaning Methods;600
1.16.4.3.2;4.3.2. Physical Cleaning Methods;604
1.16.4.3.2.1;Forward Flushing;604
1.16.4.3.2.2;Backward Flushing;604
1.16.4.3.2.3;Air/Water Flush;604
1.16.4.3.2.4;Permeate Back Pressure;604
1.16.4.3.2.5;Vibration;604
1.16.4.3.2.6;CO2 Back Permeation;604
1.16.5;5. Case Study;605
1.16.5.1;5.1. Acidification and Scale Prevention for Pretreatment;605
1.16.5.2;5.2. Cartridge Filters for Prefiltration;607
1.16.5.3;5.3. Reverse Osmosis;607
1.16.5.4;5.4. Neutralization and Posttreatment;608
1.16.5.5;5.5. Total Water Production Cost and Grand Total Costs;608
1.16.6;6. Recent Advances in Ro Technology for Seawater Desalination;609
1.16.7;7. Nomenclature;611
1.16.8;References;611
1.17;14: Membrane Technologies for Point-of-Use and Point-of-Entry Applications;616
1.17.1;1. Introduction;616
1.17.2;2. Pou/Poe Systems for Home Water Treatment;618
1.17.2.1;2.1. Types of POU/POE Systems;618
1.17.2.2;2.2. Technologies in POU/POE Systems;618
1.17.2.3;2.3. Selection of POU/POE Technologies;619
1.17.3;3. Reverse Osmosis in Pou/poe System;623
1.17.3.1;3.1. Application of Reverse Osmosis in POU/POE;623
1.17.3.2;3.2. Fundamental Concept of Reverse Osmosis;627
1.17.3.3;3.3. Types and Configuration of Reverse Osmosis;630
1.17.3.4;3.4. Components and Installation of Reverse Osmosis in POU/POE Units;633
1.17.3.5;3.5. Operation and Maintenance of Reverse Osmosis in POU/POE;635
1.17.3.5.1;3.5.1. Types and Initial Concentrations of the Contaminants in Feed Water;636
1.17.3.5.2;3.5.2. Water Pressure and Temperature;636
1.17.3.5.3;3.5.3. Rejection Rate;637
1.17.3.5.4;3.5.4. Recovery Rate;638
1.17.3.5.5;3.5.5. Maintenance of an RO System;638
1.17.3.6;3.6. Fouling and Cleaning of Reverse Osmosis;639
1.17.3.7;3.7. Membrane Testing for Point-of-Use and Point-of-Entry Purposes;642
1.17.4;4. Design Examples;643
1.17.4.1;4.1. Design of RO in POU and POE Applications;643
1.17.4.2;4.2. Calculations;645
1.17.5;5. Nomenclature;647
1.17.6;References;647
1.18;15: Membrane Technologies for Oil-Water Separation;652
1.18.1;1. Introduction;652
1.18.2;2. Fundamental Knowledge of Oil Water Separation;655
1.18.2.1;2.1. Oil Properties;655
1.18.2.2;2.2. Emulsion;656
1.18.2.3;2.3. Coalescence in Oil Water Separation;658
1.18.3;3. Membrane Technology for Oil Water Separation;659
1.18.3.1;3.1. Ultrafiltration;661
1.18.3.2;3.2. Microfiltration;662
1.18.3.3;3.3. Nanofiltration;663
1.18.3.4;3.4. Reverse Osmosis;664
1.18.3.5;3.5. Integrated Membrane System;664
1.18.3.5.1;3.5.1. Combination of Ultrafiltration/Reverse Osmosis Processes;664
1.18.3.5.2;3.5.2. Combination of Ultrafiltration/Nanofiltration Processes;665
1.18.3.6;3.6. Membrane Bioreactor;666
1.18.4;4. Advances in Membrane Technology;668
1.18.4.1;4.1. Modification of Membrane;668
1.18.4.2;4.2. Improving of Hydrophilicity of Membrane for Oil Water Separation;669
1.18.4.3;4.3. Development of Inorganic Membrane;671
1.18.5;5. Design Examples;672
1.18.5.1;5.1. Example 1;674
1.18.5.2;5.2. Example 2;674
1.18.6;6. Nomenclature;675
1.18.7;References;676
1.19;16: Gas-Sparged Ultrafiltration: Recent Trends, Applications and Future Challenges;682
1.19.1;1. Introduction;683
1.19.2;2. Ultrafiltration Basics;684
1.19.2.1;2.1. Applications of Ultrafiltration;684
1.19.2.2;2.2. Advantages and Limitations of Ultrafiltration;685
1.19.2.3;2.3. Fouling Control: The Need for Gas Sparging;685
1.19.3;3. Fundamentals of Gas-Liquid Two-Phase Flow;686
1.19.3.1;3.1. Bubbles;686
1.19.3.2;3.2. Two-Phase Flow Patterns;687
1.19.4;4. Gas-sparging Inside Membrane Modules;687
1.19.4.1;4.1. Gas-Sparging in Tubular Membrane Modules;688
1.19.4.2;4.2. Gas-Sparging in Hollow Fibre Membrane Modules;689
1.19.4.3;4.3. Gas-Sparging in Flat-sheet Membrane Modules;695
1.19.4.4;4.4. Mechanisms of Flux Enhancement;696
1.19.5;5. Gas-sparging in Submerged Membrane Systems;696
1.19.5.1;5.1. Submerged Flat-Sheet Systems;697
1.19.5.2;5.2. Submerged Hollow Fibre Membranes;698
1.19.6;6. Applications of Gas-sparging;700
1.19.6.1;6.1. Water and Wastewater Treatment;700
1.19.6.2;6.2. Protein Fractionation and Concentration;702
1.19.6.3;6.3. Membrane Cleaning;703
1.19.7;7. Practical Issues and Future Challenges;704
1.19.8;8. Conclusions;704
1.19.9;9. Acronyms;705
1.19.10;10. Nomenclature;705
1.19.11;References;705
1.20;Index;711



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.