E-Book, Englisch, Band 10, 975 Seiten
Wang / Ivanov / Tay Environmental Biotechnology
2010
ISBN: 978-1-60327-140-0
Verlag: Humana Press
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 10, 975 Seiten
Reihe: Handbook of Environmental Engineering
ISBN: 978-1-60327-140-0
Verlag: Humana Press
Format: PDF
Kopierschutz: 1 - PDF Watermark
The past 30 years have seen the emergence of a growing desire worldwide that positive actions be taken to restore and protect the environment from the degrading effects of all forms of pollution - air, water, soil, and noise. Since pollution is a direct or indirect consequence of waste production, the seemingly idealistic demand for 'zero discharge' can be construed as an unrealistic demand for zero waste. However, as long as waste continues to exist, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. Three major questions usually arise when a particular type of pollution has been identi ed: (1) How serious is the pollution? (2) Is the technology to abate it available? and (3) Do the costs of abatement justify the degree of abatement achieved? This book is one of the volumes of the Handbook of Environmental Engineering series. The principal intention of this series is to help readers formulate answers to the last two questions above. The traditional approach of applying tried-and-true solutions to speci c pollution problems has been a major contributing factor to the success of environmental engineering, and has accounted in large measure for the establishment of a 'methodology of pollution control. ' However, the realization of the ever-increasing complexity and interrelated nature of current environmental problems renders it imperative that intelligent planning of pollution abatement systems be undertaken.
Autoren/Hrsg.
Weitere Infos & Material
1;Dedications;5
2;Preface;6
3;Contents;9
4;Contributors;21
5;1 Applications of Environmental Biotechnology;23
5.1;1 Introduction;24
5.2;2 Comparison of Biotechnological Treatment and Other Methods;25
5.3;3 Aerobic Treatment of Wastes;26
5.3.1;3.1 Aerobic Treatment of Solid Wastes;26
5.3.2;3.2 Aerobic Treatment of Liquid Wastes;28
5.3.3;3.3 Aerobic Treatment of Gaseous Wastes;28
5.4;4 Anaerobic Treatment of Wastes;29
5.5;5 Treatment of Heavy Metals-Containing Wastes;31
5.6;6 Enhancement of Biotechnological Treatment of Wastes;32
5.7;7 Biosensors;36
5.8;References;38
6;2 Microbiology of Environmental Engineering Systems;40
6.1;1 Microbial Groups and Their Quantification;41
6.1.1;1.1 Groups of Microorganisms;42
6.1.2;1.2 Microbiological Methods Used in Environmental Engineering;45
6.1.3;1.3 Comparison of Physical, Chemical, Physico-chemical and Microbiological Processes;49
6.2;2 Microbial Ecosystems;50
6.2.1;2.1 Structure of Ecosystems;50
6.2.2;2.2 Interactions in Microbial Ecosystems;53
6.3;3 Microbial Growth and Death;59
6.3.1;3.1 Nutrients and Media;59
6.3.2;3.2 Growth of Individual Cells;61
6.3.3;3.3 Growth of Population;63
6.3.4;3.4 Effect of Environment on Growth and Microbial Activities;64
6.3.5;3.5 Death of Microorganisms;66
6.4;4 Diversity Of Microorganisms;70
6.4.1;4.1 Physiological Groups of Microorganisms;70
6.4.2;4.2 Phylogenetic Groups of Prokaryotes;71
6.4.3;4.3 Connection Between Phylogenetic Grouping and G + C Contentof Chromosomal DNA;74
6.4.4;4.4 Comparison of rRNA-Based Phylogenetic Classificationand Conventional Phenotypic Taxonomy;75
6.4.5;4.5 Periodic Table of Prokaryotes;81
6.5;5 Functions of Microbial Groups in Environmental Engineering Systems;84
6.5.1;5.1 Functions of Anaerobic Prokaryotes;84
6.5.2;5.2 Functions of Anaerobic Respiring Prokaryotes;86
6.5.3;5.3 Functions of Facultative Anaerobic and Microaerophilic Prokaryotes;89
6.5.4;5.4 Functions of Aerobic Prokaryotes;92
6.5.5;5.5 Functions of Eukaryotic Microorganisms;98
6.6;References;99
7;3 Microbial Systematics;101
7.1;1 Introduction;102
7.2;2 Systematics, Taxonomy, and Nomenclature of Prokaryotes;103
7.2.1;2.1 General Definitions;103
7.2.2;2.2 The Definition of the Prokaryote Species;104
7.2.3;2.3 The Number of Prokaryotes that Have Been Described;107
7.3;3 Classification of Prokaryotes;108
7.3.1;3.1 Genotypic Properties Used in Prokaryote Classification;110
7.3.2;3.2 Phenotypic Properties Used in Prokaryote Classification;112
7.3.3;3.3 The Polyphasic Approach Toward Prokaryote Classification;114
7.4;4 Naming of Prokaryotes;115
7.4.1;4.1 The Binomial System of Naming Prokaryotes;115
7.4.2;4.2 The Bacteriological Code;116
7.4.3;4.3 The International Committee on Systematics of Prokaryotes;116
7.4.4;4.4 The International Journal of Systematic and Evolutionary Microbiology;117
7.4.5;4.5 Information on Nomenclature of Prokaryotes on the Internet;117
7.5;5 Culture Collections of Prokaryotes and Their Importance in Taxonomy and Identification;118
7.6;6 Small-Subunit rRNA-Based Classification of Prokaryotes;118
7.6.1;6.1 16S rRNA as a Phylogenetic Marker;119
7.6.2;6.2 The Differences Between Bacteria and Archaea;126
7.6.3;6.3 An Overview of the Bacteria;129
7.6.4;6.4 An Overview of the Archaea;130
7.7;7 Sources of Information on Prokaryote Systematics;131
7.7.1;7.1 Bergey's Manual of Systematic Bacteriology;131
7.7.2;7.2 The Prokaryotes;131
7.8;8 Identification of Prokaryote Isolates;132
7.9;9 The Number of Different Species of Prokaryotes in Nature;134
7.10;10 Conclusions;136
7.11;Nomenclature;137
7.12;References;137
8;4 Microbial Ecology;141
8.1;1 Introduction;141
8.2;2 The Major Terms, Principles, and Concepts of General and Microbial Ecology;143
8.2.1;2.1 From Molecule to Biosphere: The Hierarchy of Organizational Levels in Biology;143
8.2.2;2.2 The Ecosystem Concept;145
8.2.2.1;2.2.1 Food Chain and Metabolic Network;147
8.2.2.2;2.2.2 The Basics of Microbial Stoichiometry;148
8.2.2.3;2.2.3 Microbial Loop;150
8.2.2.4;2.2.4 Homeostasis;150
8.2.2.5;2.2.5 Ecosystem Productivity;151
8.2.3;2.3 Environmental Factors;152
8.2.3.1;2.3.1 Liebig's ``Law of Minimum'';152
8.2.3.2;2.3.2 Shelford's Tolerance ``Law'';153
8.2.4;2.4 Population Dynamics, Succession and Life Strategy Concept;154
8.2.4.1;2.4.1 Population Dynamics and Fluctuations;154
8.2.4.2;2.4.2 Development and Evolution of Ecosystems;158
8.2.4.3;2.4.3 The Concept of Life Strategy;159
8.2.4.4;2.4.4 Growth Kinetics of Microorganisms with Different Life Strategy;163
8.3;3 Methods of Microbial Ecology;167
8.3.1;3.1 Natural Microbial Populations and ``Laboratory Artifacts'';168
8.3.2;3.2 ``Great Plate Count Anomaly'';169
8.3.3;3.3 Estimation of the Microbial Numbers and Biomass in Soils and Water;171
8.3.4;3.4 Estimating Microbial Growth Rates In Situ;173
8.3.4.1;3.4.1 Microscopy In Situ;173
8.3.4.2;3.4.2 Methods Based on the Analysis of the Cell-Division Cycle;174
8.3.4.3;3.4.3 Genetic Methods;174
8.3.4.4;3.4.4 Techniques Stemming from Chemostat Theory;174
8.3.4.5;3.4.5 Isotope Techniques;175
8.3.4.6;3.4.6 Assessment of Productivity from Fluctuation Frequency of Microbial Biomass;176
8.3.4.7;3.4.7 Estimation of Productivity from C-Balance;176
8.4;4 Diversity of Microbial Habitats in Nature;178
8.4.1;4.1 Terms and General Principles (How to Classify Habitats);178
8.4.2;4.2 Atmosphere;180
8.4.2.1;4.2.1 Atmosphere as Extreme Habitat;180
8.4.2.2;4.2.2 Organisms;182
8.4.2.3;4.2.3 Significance for Environmental Engineering;182
8.4.3;4.3 Aquatic Ecosystems;182
8.4.3.1;4.3.1 Lakes;183
8.4.3.2;4.3.2 Rivers;187
8.4.3.3;4.3.3 Marine Ecosystems;188
8.4.3.4;4.3.4 Significance for Environmental Engineering;190
8.4.4;4.4 Terrestrial Ecosystems;190
8.4.4.1;4.4.1 Soil;190
8.4.4.2;4.4.2 Deep Subsurface;193
8.4.4.3;4.4.3 Wetlands;194
8.4.4.4;4.4.4 Significance for Environmental Engineering;195
8.5;Nomenclature;197
8.6;Glossary;198
8.7;References;208
9;5 Microbial Metabolism: Importance for Environmental Biotechnology;212
9.1;1 Introduction: the Metabolic Diversity of Prokaryotic and Eukaryotic Microorganisms;213
9.2;2 Dissimilatory Metabolism of Microorganisms: Thermodynamic and Mechanistic Principles;214
9.2.1;2.1 General Overview of the Metabolic Properties of Microorganisms: A Thermodynamic Approach;214
9.2.2;2.2 Modes of Energy Generation of Prokaryotic and Eukaryotic Microorganisms;221
9.3;3 Assimilatory Metabolism of Microorganisms;230
9.3.1;3.1 Carbon Assimilation;230
9.3.2;3.2 Nitrogen Assimilation;232
9.3.3;3.3 Phosphorus Assimilation;234
9.3.4;3.4 Sulfur Assimilation;234
9.3.5;3.5 Iron Assimilation;235
9.4;4 The Phototrophic Way of Life;235
9.4.1;4.1 Oxygenic Photosynthesis;236
9.4.2;4.2 Anoxygenic Photosynthesis;236
9.4.3;4.3 Retinal-Based Phototrophic Life;238
9.5;5 Chemoheterotrophic Life: Degradation of Organic Compounds In Aerobic and Anaerobic Environments;239
9.5.1;5.1 Aerobic Degradation;240
9.5.2;5.2 Anaerobic Respiration: Denitrification;241
9.5.3;5.3 Fermentation;242
9.5.4;5.4 Anaerobic Respiration: Dissimilatory Iron and Manganese Reduction;246
9.5.5;5.5 Anaerobic Respiration: Dissimilatory Sulfate Reduction;247
9.5.6;5.6 Methanogenesis;248
9.5.7;5.7 Proton-Reducing Acetogens and Interspecies Hydrogen Transfer;250
9.6;6 The Chemoautotrophic Way of Life;253
9.6.1;6.1 Reduced Nitrogen Compounds as Energy Source;253
9.6.2;6.2 Reduced Sulfur Compounds as Energy Source;255
9.6.3;6.3 Reduced Iron and Manganese as Energy Source;257
9.6.4;6.4 Hydrogen as Energy Source;257
9.6.5;6.5 Other Substrates as Energy Sources for Chemoautotrophic Growth;258
9.7;7 The Biogeochemical Cycles of the Major Elements;259
9.7.1;7.1 The Carbon Cycle;259
9.7.2;7.2 The Nitrogen Cycle;261
9.7.3;7.3 The Sulfur Cycle;261
9.7.4;7.4 Biogeochemical Cycles of Other Elements;261
9.8;8 Epilogue;264
9.9;Nomenclature;264
9.10;References;264
9.11;Appendix: Compounds of Environmental Significance and the Microbial Processes Responsible for Their Formation and Degradation;267
9.11.1;Appendix: Compounds of Environmental Significance and the Microbial Processes Responsible for Their Formation and Degradation;264
10;6 Microbial Ecology of Isolated Life Support Systems;275
10.1;1 Introduction;276
10.2;2 Functional and Regulator Role of Microbial Populations;277
10.2.1;2.1 Microalgae and Bacteria Communities as Bioregenerators in Life Support Systems;277
10.2.1.1;2.1.1 Special Waste Treatment Systems for LSS;281
10.3;3 Microecological Risks for Human Life Support Systems;284
10.3.1;3.1 Man and His Microflora as a Single Ecosystem;284
10.3.2;3.2 Environmental Microflora in Different Types of LSS;289
10.3.3;3.3 Unsolved Problems and Prospects;294
10.3.3.1;3.3.1 Use of the Organism's Protective Microorganisms to Defend Against Pathogens;295
10.4;4 The Indicator Role and Monitoring of Microorganismsin LSS;296
10.4.1;4.1 Microbial Diagnostics Method;297
10.4.2;4.2 The Use of Skin Bacteria and Bactericidal Activity to Estimate Immune Responsiveness;297
10.4.3;4.3 The Use of Microecosystem Response to Indicate Human Health;298
10.4.4;4.4 The Estimation of the ``Health'' and Normal Functioningof LSS and Its Links;299
10.5;5 Conclusion;300
10.6;References;301
11;7 Environmental Solid-State Cultivation Processes and Bioreactors;305
11.1;1 Definition of Solid-State Cultivation Processes;306
11.2;2 Classification of Environmental Applications of Solid-State Cultivation Processes;308
11.2.1;2.1 General Scheme for Classifying Solid-State Processes Used in Environmental Biotechnology;308
11.2.2;2.2 Examples of Environmentally-Related Processes that Use Solid Residues;309
11.2.2.1;2.2.1 Two Examples of Class 1 Processes;309
11.2.2.2;2.2.2 An Example of a Class 2 Process;309
11.2.2.3;2.2.3 Two Examples of Class 3 Processes;312
11.2.2.4;2.2.4 An Example of a Class 4 Process;315
11.2.2.5;2.2.5 Two Examples of Class 5 Processes;316
11.3;3 Classification of Process Types;317
11.4;4 The Functions that the Solid-State Cultivation Bioreactor Must Fulfill;319
11.5;5 Classification of Bioreactors Used in Environmentally-Related Solid-State Cultivation Processes;322
11.5.1;5.1 Group I Bioreactors: Not Aerated Forcefully and Not-Mixed;322
11.5.2;5.2 Group II Bioreactors: Aerated Forcefully but Not-Mixed;323
11.5.3;5.3 Group III Bioreactors: Not Aerated Forcefully but Mixed;325
11.5.4;5.4 Group IV Bioreactors: Aerated Forcefully and Mixed;325
11.6;6 Design of Bioreactors for Environmentally-Related Solid-State Cultivation Processes;328
11.6.1;6.1 General Considerations for the Selection and Design of Bioreactors;328
11.6.2;6.2 The Importance of Characterizing the Growth Kinetics of the Microorganism;333
11.6.3;6.3 Design of Group I Bioreactors;334
11.6.3.1;6.3.1 Simple Approaches to Making Design Decisions About Group I Bioreactors;336
11.6.3.2;6.3.2 Model-Based Approaches to Making Design Decisions About Group I Bioreactors;337
11.6.3.3;6.3.3 Synthesis of Our Knowledge About How Best to Operateand Design Group I Bioreactors;337
11.6.4;6.4 Design of Group II Bioreactors;337
11.6.4.1;6.4.1 Simple Approaches to Making Design Decisions About Group II Bioreactors;338
11.6.4.2;6.4.2 Model-Based Approaches to Making Design Decisions About Group II Bioreactors;340
11.6.4.3;6.4.3 Synthesis of Our Knowledge About How Best to Operate and Design Group II Bioreactors;342
11.6.5;6.5 Design of Group III Bioreactors;344
11.6.5.1;6.5.1 Simple Approaches to Making Design Decisions About Group III Bioreactors;344
11.6.5.2;6.5.2 Model-based Approaches to Making Design Decisions about Group III Bioreactors;346
11.6.5.3;6.5.3 Recent Directions in Characterizing the Phenomena in Group III Bioreactors;347
11.6.5.4;6.5.4 Synthesis of Our Knowledge about How Best to Operate and Design Group III Bioreactors;349
11.6.6;6.6 Design of Group IV Bioreactors;349
11.6.6.1;6.6.1 Simple Approaches to Making Design Decisions about Group IV Bioreactors;350
11.6.6.2;6.6.2 Model-Based Approaches to Making Design Decisions about Group IV Bioreactors;350
11.7;7 Associated Issues That Must Be Considered in Bioreactor Design;351
11.7.1;7.1 A Challenge in all Bioreactor Types: Design of the Air Preparation System;351
11.7.2;7.2 Monitoring and Control Systems for Bioreactors;352
11.7.2.1;7.2.1 Equipment for On-Line Monitoring;352
11.7.2.2;7.2.2 Control Strategies for Solid-State Cultivation Bioreactors;355
11.8;8 Future Perspectives;355
11.9;Acknowledgments;356
11.10;Nomenclature;356
11.11;References;357
12;8 Value-Added Biotechnological Products from Organic Wastes;361
12.1;1 Organic Wastes as a Raw Material for Biotechnological Transformation;362
12.2;2 Biotechnological Products of Organic Waste Transformation;362
12.2.1;2.1 Solid-State Fermentation for Bioconversion of Agricultural and Food Processing Waste into Value-Added Products;363
12.2.2;2.2 Production of Enzymes;368
12.2.3;2.3 Production of Organic Acids;371
12.2.4;2.4 Production of Flavors;376
12.2.5;2.5 Production of Polysaccharides;379
12.2.6;2.6 Mushroom Production;380
12.2.7;2.7 Production of Biodegradable Plastics;382
12.2.8;2.8 Production of Animal Feed;384
12.2.8.1;2.8.1 Enrichment of Lignocellulosic Material by Single Cell Protein;384
12.2.8.2;2.8.2 Use of Organic Waste as Substance for Microbial Cells Production;385
12.2.9;2.9 Use of Organic Waste for Production of Fungi Biomass for Bioremediation;386
12.2.10;2.10 Dietary Fiber Production from Organic Waste;386
12.2.11;2.11 Production of Pharmaceuticals from Organic Waste;387
12.2.12;2.12 Production of Gibberellic Acid;389
12.2.13;2.13 Production of Chemicals;389
12.2.13.1;2.13.1 Production of Acetone and Butanol;390
12.2.13.2;2.13.2 Production of Glycerol;390
12.2.14;2.14 Production of Fuel;392
12.2.14.1;2.14.1 Production of Ethanol;392
12.2.14.2;2.14.2 Production of Hydrogen;396
12.3;3 Value-Added by-Products of Environmental Biotechnology;398
12.3.1;3.1 Composting;398
12.3.2;3.2 Aerobic Intensive Bioconversion of Organic Wastes into Fertilizer;401
12.3.3;3.3 Recovery of Metals from Mining and Industrial Wastes;401
12.3.4;3.4 Recovery of Metals from Waste Streams by Sulfate-Reducing Bacteria;402
12.3.5;3.5 Recovery of Phosphate and Ammonia by Iron-Reducing and Iron-Oxidizing Bacteria;404
12.4;References;406
13;9 Anaerobic Digestion in Suspended Growth Bioreactors;413
13.1;1 Introduction;414
13.2;2 Fundamentals of Anaerobic Bioprocesses;415
13.2.1;2.1 Microbiology and Anaerobic Metabolism of Organic Matter;416
13.2.1.1;2.1.1 Hydrolysis;417
13.2.1.2;2.1.2 Acidification;418
13.2.1.3;2.1.3 Acetogenesis;418
13.2.1.4;2.1.4 Methanogenesis;418
13.2.2;2.2 Stoichiometry and Energetics;419
13.2.3;2.3 Kinetics;421
13.3;3 Effect of Feed Characteristics on Anaerobic Digestion;426
13.3.1;3.1 Anaerobic Biodegradability;427
13.3.2;3.2 Inhibition and Toxicity;427
13.3.3;3.3 Availability of Nutrients;428
13.3.4;3.4 Flow-Rate Variations;428
13.4;4 Reactor Configurations;429
13.4.1;4.1 Conventional Systems;429
13.4.2;4.2 High-Rate Systems;430
13.4.3;4.3 Two-Stage Systems;433
13.4.4;4.4 Natural Systems;433
13.5;5 Suspended Growth Anaerobic Bioreactor Design;434
13.5.1;5.1 Operating Parameters;434
13.5.1.1;5.1.1 pH and Alkalinity;434
13.5.1.2;5.1.2 Temperature;435
13.5.1.3;5.1.3 HRT;435
13.5.1.4;5.1.4 Mixing;435
13.5.1.5;5.1.5 Toxicity Prevention and Removal;436
13.5.2;5.2 Sizing Bioreactors;437
13.5.2.1;5.2.1 Conventional Systems;437
13.5.2.2;5.2.2 Upflow Anaerobic Sludge Blanket Reactors;439
13.5.3;5.3 Biogas Collection and Exploitation;440
13.5.4;5.4 StartUp and Acclimation;440
13.6;6 Control and Optimization of Anaerobic Digesters;441
13.6.1;6.1 Monitoring;441
13.6.2;6.2 Process Control;442
13.6.3;6.3 Optimization;442
13.6.3.1;6.3.1 Stability;442
13.6.3.2;6.3.2 Operating Costs;443
13.6.3.3;6.3.3 Discharge Costs;443
13.7;7 Applications;444
13.7.1;7.1 Anaerobic Sludge Digestion;444
13.7.2;7.2 Comparison Between UASB and CSTR for Anaerobic Digestion of Dairy Wastewaters;445
13.7.2.1;7.2.1 UASB Experiment with Dairy Wastewater;445
13.7.2.2;7.2.2 Conventional Digester Experiment;447
13.7.2.3;7.2.3 Conclusion;447
13.7.3;7.3 Biogas Production from Sweet Sorghum;448
13.7.4;7.4 Anaerobic Digestion of Solid Wastes;449
13.8;Nomenclature;450
13.9;References;452
14;10 Selection and Design of Membrane Bioreactors in Environmental Bioengineering;457
14.1;1 Introduction;458
14.2;2 Theoretical Aspects of Membrane Filtration;461
14.2.1;2.1 Membrane Classification;463
14.2.2;2.2 Types of Packaging of Membranes;465
14.2.3;2.3 Membrane Technologies;467
14.2.4;2.4 Factors Affecting Membrane Processes;470
14.2.4.1;2.4.1 Membrane Properties;472
14.2.4.2;2.4.2 Feed Composition;474
14.2.4.3;2.4.3 Operational Parameters;474
14.2.5;2.5 Mathematical Models for Flux Prediction;474
14.3;3 Membrane Biological Reactors for Solid/Liquid Separation;476
14.3.1;3.1 Process Configurations;476
14.3.2;3.2 Fouling in MBRs;478
14.3.2.1;3.2.1 Impact Factors;478
14.3.2.2;3.2.2 Mechanisms;482
14.3.2.3;3.2.3 Control Strategies;483
14.3.2.4;3.2.4 Critical Flux Concept;485
14.3.3;3.3 Commercial Membrane;488
14.3.3.1;3.3.1 Kubota;488
14.3.3.2;3.3.2 General Electric Zenon;490
14.3.3.3;3.3.3 Siemens Water Technologies - Memcor;491
14.3.3.4;3.3.4 X-Flow;492
14.3.3.5;3.3.5 Mitsubishi;493
14.3.3.6;3.3.6 Huber;494
14.4;4 Design of the Biological Tank for COD and Nitrogen Removal;495
14.4.1;4.1 Introduction;495
14.4.2;4.2 Influent COD and TKN Fractioning;498
14.4.3;4.3 Impact of Environmental Conditions on the Bacterial Growthand the Substrate Removal;500
14.4.3.1;4.3.1 Feed;502
14.4.3.2;4.3.2 Temperature;503
14.4.3.3;4.3.3 pH;504
14.4.3.4;4.3.4 Dissolved Oxygen Concentration;505
14.4.4;4.4 Design Procedure;506
14.4.4.1;4.4.1 Design Sludge Age;506
14.4.4.2;4.4.2 Anoxic Fraction;508
14.4.4.3;4.4.3 Overall Volume, Nitrification Volume, Denitrification Volume;509
14.4.4.4;4.4.4 Daily Sludge Production;509
14.4.4.5;4.4.5 Effluent COD;510
14.4.4.6;4.4.6 Effluent TKN;510
14.4.4.7;4.4.7 Aerated Mixed Liquor Recirculation Optimization;511
14.4.4.8;4.4.8 Effluent Total Nitrogen;512
14.4.4.9;4.4.9 Daily Oxygen Consumption and Hourly Air Flowrate;513
14.4.4.10;4.4.10 Design Parameters Optimization;515
14.4.5;4.5 Design Example;515
14.4.5.1;4.5.1 Solution;516
14.4.5.2;4.5.2 Some Design Evaluations;525
14.5;Nomenclature;527
14.6;References;532
15;11 Closed Ecological Systems, Space Life Support and Biospherics;535
15.1;1 Introduction;536
15.2;2 Terminology of Closed Ecological Systems: From Laboratory Ecospheres to Manmade Biospheres;537
15.2.1;2.1 Materially-Closed Ecospheres;538
15.2.2;2.2 Bioregenerative Technology;538
15.2.3;2.3 Controlled Environmental Life Support Systems;538
15.2.4;2.4 Closed Ecological Systems for Life Support;539
15.2.5;2.5 Biospheric Systems;539
15.3;3 Different Types of Closed Ecological Systems;540
15.3.1;3.1 Research Programs in the United States;540
15.3.1.1;3.1.1 CELSS Program of NASA;540
15.3.1.2;3.1.2 Biosphere Design: Lessons from the Biosphere 2 Experiment;548
15.3.1.3;3.1.3 Mars on Earth® Closed Ecological System Project;557
15.3.2;3.2 Russian Research in Closed Ecosystems;560
15.3.2.1;3.2.1 Experimental Facilities of IBMP (Moscow);560
15.3.2.2;3.2.2 Experiments with Bios-3 (Institute of Biophysics, Krasnoyarsk);565
15.3.3;3.3 European Research on Closed Ecological Systems;569
15.3.3.1;3.3.1 The Closed Equilibrated Biological Aquatic System;570
15.3.3.2;3.3.2 The MELiSSA (Micro-Ecological Life Support System Alternative) Project;572
15.3.4;3.4 Japanese Research in Closed Ecological Systems;574
15.4;4 Conclusion;577
15.5;References;579
16;12 Natural Environmental Biotechnology;584
16.1;1 Aquaculture Treatment: Water Hyacinth System;585
16.1.1;1.1 Description;585
16.1.2;1.2 Applications;585
16.1.3;1.3 Limitations;586
16.1.4;1.4 Design Criteria;586
16.1.5;1.5 Performance;587
16.2;2 Aquaculture Treatment: Wetland System;587
16.2.1;2.1 Description;587
16.2.2;2.2 Constructed Wetlands;588
16.2.3;2.3 Applications;590
16.2.4;2.4 Limitations;590
16.2.5;2.5 Design Criteria;590
16.2.6;2.6 Performance;590
16.3;3 Evapotranspiration System;593
16.3.1;3.1 Description;593
16.3.2;3.2 Applications;594
16.3.3;3.3 Limitations;594
16.3.4;3.4 Design Criteria;594
16.3.5;3.5 Performance;595
16.3.6;3.6 Costs;595
16.4;4 Land Treatment: Rapid Rate System;595
16.4.1;4.1 Description;596
16.4.2;4.2 Applications;598
16.4.3;4.3 Limitations;598
16.4.4;4.4 Design Criteria;598
16.4.5;4.5 Performance;599
16.4.6;4.6 Costs;600
16.5;5 Land Treatment: Slow Rate System;601
16.5.1;5.1 Description;601
16.5.2;5.2 Applications;603
16.5.3;5.3 Limitations;603
16.5.4;5.4 Design Criteria;605
16.5.5;5.5 Performance;605
16.5.6;5.6 Costs;605
16.6;6 Land Treatment: Overland Flow System;607
16.6.1;6.1 Description;607
16.6.2;6.2 Application;609
16.6.3;6.3 Limitations;609
16.6.4;6.4 Design Criteria;609
16.6.5;6.5 Performance;610
16.6.6;6.6 Costs;610
16.7;7 Subsurface Infiltration;612
16.7.1;7.1 Description;613
16.7.2;7.2 Applications;615
16.7.3;7.3 Limitations;615
16.7.4;7.4 Design Criteria;615
16.7.5;7.5 Performance;615
16.8;8 Facultative Lagoons and Algal Harvesting;616
16.9;9 Vegetative Filter Systems;617
16.9.1;9.1 Conditions for System Utilization;618
16.9.2;9.2 Planning Considerations;618
16.9.3;9.3 Component Design Criteria;618
16.9.3.1;9.3.1 Settling Basin;618
16.9.3.2;9.3.2 Effluent Transport System;619
16.9.3.3;9.3.3 Junction Box;619
16.9.3.4;9.3.4 Distribution Manifold;619
16.9.3.5;9.3.5 Runoff Field Application Area;619
16.9.4;9.4 Specifications for Vegetation Establishment;620
16.9.5;9.5 Operation and Maintenance Criteria;621
16.9.6;9.6 Innovative Designs;621
16.9.7;9.7 Outline of Design Procedure;622
16.9.8;9.8 Procedure to Estimate Soil Infiltration Rate;622
16.9.9;9.9 Procedure to Determine Slopes;623
16.10;10 Design Example;624
16.11;References;626
16.12;Appendix;631
17;13 Aerobic and Anoxic Suspended-Growth Biotechnologies;640
17.1;1 Conventional Activated Sludge;641
17.1.1;1.1 Description;641
17.1.2;1.2 Performance and Design Criteria;643
17.1.3;1.3 Mechanical Aeration;644
17.2;2 High Rate Activated Sludge;645
17.2.1;2.1 Description;645
17.2.2;2.2 Performance and Design Criteria;646
17.3;3 Pure Oxygen Activated Sludge, Covered;646
17.3.1;3.1 Description;646
17.3.2;3.2 Performance and Design Criteria;647
17.4;4 Contact Stabilization;649
17.4.1;4.1 Description;649
17.4.2;4.2 Applications;649
17.4.3;4.3 Performance and Design Criteria;650
17.5;5 Activated Sludge With Nitrification;650
17.5.1;5.1 Description;650
17.5.2;5.2 Performance and Design Criteria;651
17.6;6 Separate Stage Nitrification;652
17.6.1;6.1 Description;652
17.6.2;6.2 Performance and Design Criteria;652
17.7;7 Separate Stage Denitrification;653
17.7.1;7.1 Description;653
17.7.2;7.2 Performance and Design Criteria;654
17.8;8 Extended Aeration;654
17.8.1;8.1 Description;654
17.8.2;8.2 Performance and Design Criteria;655
17.9;9 Oxidation Ditch;655
17.9.1;9.1 Description;655
17.9.2;9.2 Performance and Design Criteria;656
17.10;10 Powdered Activated Carbon Treatment;657
17.10.1;10.1 Types of PACT Systems;657
17.10.2;10.2 Applications and Performance;658
17.10.3;10.3 Process Equipment;660
17.10.4;10.4 Process Limitations;660
17.11;11 Carrier-Activated Sludge Processes (Captor AndCast Systems);660
17.11.1;11.1 Advantages of Biomass Carrier Systems;661
17.11.2;11.2 The CAPTOR Process;661
17.11.3;11.3 Development of CAPTOR Process;661
17.11.4;11.4 Pilot-Plant Study;662
17.11.5;11.5 Full-Scale Study of CAPTOR and CAST;662
17.11.5.1;11.5.1 Full-Scale Plant Initial Results;663
17.11.5.2;11.5.2 Pilot-Scale Studies for Project Development;664
17.11.5.3;11.5.3 Full-Scale Plant Results After Modifications;666
17.11.5.4;11.5.4 Overall Conclusions;669
17.12;12 Activated Bio-Filter;670
17.12.1;12.1 Description;670
17.12.2;12.2 Applications;671
17.12.3;12.3 Design Criteria;671
17.12.4;12.4 Performance;672
17.13;13 Vertical Loop Reactor;672
17.13.1;13.1 Description;672
17.13.2;13.2 Applications;673
17.13.3;13.3 Design Criteria;673
17.13.4;13.4 Performance;674
17.13.5;13.5 EPA Evaluation of VLR;674
17.13.6;13.6 Energy Requirements;675
17.13.7;13.7 Costs;677
17.14;14 Phostrip Process;677
17.14.1;14.1 Description;677
17.14.2;14.2 Applications;678
17.14.3;14.3 Design Criteria;678
17.14.4;14.4 Performance;679
17.14.5;14.5 Cost;679
17.14.5.1;14.5.1 Construction Cost;679
17.14.5.2;14.5.2 Operation and Maintenance Cost;679
17.15;References;681
17.16;Appendix;687
18;14 Aerobic and Anaerobic Attached Growth Biotechnologies;688
18.1;1 Trickling Filter;688
18.1.1;1.1 Low-Rate Trickling Filter, Rock Media;690
18.1.1.1;1.1.1 Applications;690
18.1.1.2;1.1.2 Limitations;691
18.1.1.3;1.1.3 Performance;691
18.1.1.4;1.1.4 Design Criteria;691
18.1.2;1.2 High-Rate Trickling Filter, Rock Media;691
18.1.2.1;1.2.1 Applications;692
18.1.2.2;1.2.2 Limitations;692
18.1.2.3;1.2.3 Performance;693
18.1.2.4;1.2.4 Design Criteria;693
18.1.3;1.3 Trickling Filter, Plastic Media;693
18.1.3.1;1.3.1 Applications;695
18.1.3.2;1.3.2 Limitations;695
18.1.3.3;1.3.3 Performance;695
18.1.3.4;1.3.4 Design Criteria;695
18.2;2 Denitrification Filter;696
18.2.1;2.1 Denitrification Filter, Fine Media;696
18.2.1.1;2.1.1 Performance;697
18.2.1.2;2.1.2 Design Criteria;697
18.2.2;2.2 Denitrification Filter, Coarse Media;697
18.2.2.1;2.2.1 Performance;698
18.2.2.2;2.2.2 Design Criteria;698
18.3;3 Rotating Biological Contactor;698
18.3.1;3.1 Operating Characteristics;700
18.3.1.1;3.1.1 Effect of Hydraulic Loading and Staging;700
18.3.1.2;3.1.2 Effect of Residence Time;701
18.3.1.3;3.1.3 Effect of Influent BOD Concentration;702
18.3.1.4;3.1.4 Effect of Disc Speed;703
18.3.2;3.2 Performance;703
18.3.3;3.3 Design Criteria;703
18.4;4 Fluidized Bed Reactor;704
18.4.1;4.1 FBR Process Description;705
18.4.2;4.2 Process Design;706
18.4.3;4.3 Applications;706
18.4.4;4.4 Design Considerations;708
18.4.5;4.5 Case Study: Reno-Sparks WWTP;708
18.5;5 Packed Bed Reactor;709
18.5.1;5.1 Aerobic PBR;709
18.5.2;5.2 Anaerobic Denitrification PBR;711
18.5.2.1;5.2.1 Coarse Media Beds;711
18.5.2.2;5.2.2 Fine Media Beds;712
18.5.3;5.3 Applications;713
18.5.4;5.4 Design Criteria;713
18.5.4.1;5.4.1 Coarse Media Beds;713
18.5.4.2;5.4.2 Fine Media Beds;713
18.5.5;5.5 Performance;715
18.5.6;5.6 Case Study: Hookers Point WWTP (Tampa, Florida);715
18.5.7;5.7 Energy Requirement;717
18.5.7.1;5.7.1 Coarse Media Beds;717
18.5.7.2;5.7.2 Fine Media Beds;717
18.5.8;5.8 Costs;717
18.5.8.1;5.8.1 Coarse Media Beds;717
18.5.8.2;5.8.2 Fine Media Beds;718
18.6;6 Biological Aerated Filter;719
18.6.1;6.1 BAF Process Description;719
18.6.2;6.2 Applications;721
18.6.3;6.3 BAF Media;721
18.6.4;6.4 Process Design and Performance;722
18.6.5;6.5 Solids Production;726
18.7;7 Hybrid Biological-activated Carbon Systems;727
18.7.1;7.1 General Introduction;727
18.7.2;7.2 Downflow Conventional Biological GAC Systems;727
18.7.2.1;7.2.1 Introduction;727
18.7.2.2;7.2.2 Saskatchewan-Canada Biological GAC Filtration Plant for Biological Treatment of Drinking Water;728
18.7.2.3;7.2.3 Ngau Tam Mei Water Works, Hong Kong, China;728
18.7.3;7.3 Upflow Fluidized Bed Biological GAC System;729
18.8;References;731
18.9;Appendix;737
19;15 Sequencing Batch Reactor Technology;738
19.1;1 Background and Process Description;738
19.2;2 Proprietary SBR Processes;740
19.2.1;2.1 Aqua SBR;741
19.2.2;2.2 Omniflo;741
19.2.3;2.3 Fluidyne;742
19.2.4;2.4 CASS;742
19.2.5;2.5 ICEAS;743
19.3;3 Description of a Treatment Plant Using SBR;744
19.4;4 Applicability;746
19.5;5 Advantages and Disadvantages;746
19.5.1;5.1 Advantages;746
19.5.2;5.2 Disadvantages;746
19.6;6 Design Criteria;747
19.6.1;6.1 Design Parameters;747
19.6.2;6.2 Construction;751
19.6.3;6.3 Tank and Equipment Description;752
19.6.4;6.4 Health and Safety;753
19.7;7 Process Performance;753
19.8;8 Operation and Maintenance;755
19.9;9 Cost;756
19.10;10 Packaged SBR for Onsite Systems;757
19.10.1;10.1 Typical Applications;758
19.10.2;10.2 Design Assumptions;758
19.10.3;10.3 Performance;759
19.10.4;10.4 Management Needs;759
19.10.5;10.5 Risk Management Issues;760
19.10.6;10.6 Costs;760
19.11;References;761
19.12;Appendix;764
20;16 Flotation Biological Systems;765
20.1;1 Introduction;765
20.2;2 Flotation Principles and Process Description;768
20.2.1;2.1 Dissolved Air Flotation;768
20.2.2;2.2 Air Dissolving Tube and Friction Valve;771
20.2.3;2.3 Flotation Chamber;772
20.2.4;2.4 Spiral Scoops;773
20.2.5;2.5 Flotation System Configurations;774
20.3;3 Flotation Biological Systems;776
20.3.1;3.1 General Principles and Process Description;776
20.3.2;3.2 Kinetics of Conventional Activated Sludge Process with Sludge Recycle;777
20.3.3;3.3 Kinetics of Flotation Activated Sludge Process Using Secondary Flotation;780
20.4;4 Case Studies of FBS Treatment Systems;784
20.4.1;4.1 Petrochemical Industry Effluent Treatment;784
20.4.2;4.2 Municipal Effluent Treatment;785
20.4.3;4.3 Paper Manufacturing Effluent Treatment;788
20.5;5 Operational Difficulties and Remedy;788
20.6;6 Summary and Conclusions;792
20.7;Abbreviations;793
20.8;Nomenclature;794
20.9;References;795
21;17 A/O Phosphorus Removal Biotechnology;798
21.1;1 Background and Theory;798
21.2;2 Biological Phosphorus Removal Mechanism;801
21.3;3 Process Description;803
21.4;4 Retrofitting Existing Activated Sludge Plants;805
21.4.1;4.1 A/O Process Performance;808
21.4.2;4.2 Cost for A/O Process Retrofit;808
21.5;5 A/O Process Design;809
21.5.1;5.1 A/O Operating Conditions;809
21.5.2;5.2 Design Considerations;809
21.5.3;5.3 Attainability of Effluent Limits;812
21.5.4;5.4 Oxygen Requirements for Nitrification;812
21.6;6 Dual Phosphorus Removal and Nitrogen RemovalA2/O Process;812
21.6.1;6.1 Phosphorus and Nitrogen Removal with the A2/O Process;815
21.6.2;6.2 Phosphorus and Nitrogen Removal with the Bardenpho Process;816
21.6.3;6.3 Phosphorus and Nitrogen Removal with the University of Capetown Process;817
21.6.4;6.4 Phosphorus and Nitrogen Removal with the Modified PhoStrip Process;818
21.7;7 Sludges Derived from Biological Phosphorus Processes;821
21.7.1;7.1 Sludge Characteristics;821
21.7.2;7.2 Sludge Generation Rates;821
21.7.3;7.3 Sludge Management;822
21.8;8 Capital and O&M Costs;823
21.9;References;825
21.10;Appendix;829
22;18 Treatment of Septage and Biosolids from Biological Processes;830
22.1;1 Introduction;831
22.2;2 Expressor Press;832
22.3;3 Som-A-System;834
22.4;4 Centripress;837
22.5;5 Hollin Iron Works Screw Press;838
22.6;6 Sun Sludge System;842
22.7;7 Wedgewater Bed;843
22.8;8 Vacuum Assisted Bed;845
22.9;9 Reed Bed;847
22.10;10 Sludge Freezing Bed;848
22.11;11 Biological Flotation;849
22.12;12 Treatment of Septage as Sludge by Land Application, Lagoon, and Composting;850
22.12.1;12.1 Receiving Station (Dumping Station/Storage Facilities);850
22.12.2;12.2 Receiving Station (Dumping Station, Pretreatment, Equalization);851
22.12.3;12.3 Land Application of Septage;852
22.12.4;12.4 Lagoon Disposal;853
22.12.5;12.5 Composting;854
22.12.6;12.6 Odor Control;856
22.13;13 Treatment of Septage at Biological Wastewater Treatment Plants;857
22.13.1;13.1 Treating Septage as a Wastewater or as a Sludge;857
22.13.2;13.2 Pretreatment of Septage at a Biological Wastewater Treatment Plant;857
22.13.3;13.3 Primary Treatment of Septage at a Biological Wastewater Treatment Plant;858
22.13.4;13.4 Secondary Treatment by Biological Suspended-Growth Systems;859
22.13.5;13.5 Secondary Treatment by Biological Attached-Growth Systems;862
22.13.6;13.6 Septage Treatment by Aerobic Digestion;862
22.13.7;13.7 Septage Treatment by Anaerobic Digestion;863
22.13.8;13.8 Septage Treatment by Mechanical Dewatering;864
22.13.9;13.9 Septage Treatment by Sand Drying Beds;864
22.13.10;13.10 Costs of Septage Treatment at Biological Wastewater Treatment Plants;864
22.14;References;865
23;19 Environmental Control of Biotechnology Industry;869
23.1;1 Introduction to Biotechnology;870
23.1.1;1.1 Core Technologies;871
23.1.2;1.2 Biotechnology Materials;872
23.1.3;1.3 Drug Development;873
23.1.4;1.4 Gene Sequencing and Bioinformatics;873
23.1.5;1.5 Applications of Biotechnology Information to Medicine;874
23.1.6;1.6 Applications of Biotechnology Information to Nonmedical Markets;874
23.1.7;1.7 The Regulatory Environment;874
23.2;2 General Industrial Description and Classification;875
23.2.1;2.1 Industrial Classification of Biotechnology Industry's Pharmaceutical Manufacturing;875
23.2.2;2.2 Biotechnology Industry's Pharmaceutical SIC Subcategory Under US EPA's Guidelines;876
23.3;3 Manufacturing Processes and Waste Generation;877
23.3.1;3.1 Fermentation;877
23.3.2;3.2 Biological Product Extraction;880
23.3.3;3.3 Chemical Synthesis;881
23.3.4;3.4 Formulation/Mixing/Compounding;883
23.3.5;3.5 Research and Development;883
23.4;4 Waste Characterization and Options for Waste Disposal;884
23.4.1;4.1 Waste Characteristics;884
23.4.2;4.2 Options for Waste Disposal;885
23.5;5 Environmental Regulations on Pharmaceutical Wastewater Discharges;887
23.5.1;5.1 Regulations for Direct Discharge;887
23.5.2;5.2 Regulations for Indirect Discharge;889
23.5.3;5.3 Historical View on Regulations;889
23.6;6 Waste Management;890
23.6.1;6.1 Strategy of Waste Management;890
23.6.2;6.2 In-Plant Control;891
23.6.2.1;6.2.1 Material Substitution;891
23.6.2.2;6.2.2 Process Modification;892
23.6.2.3;6.2.3 Recycling Wastewater and Recovering Materials;893
23.6.2.4;6.2.4 Water Conservation and Reuse;893
23.6.2.5;6.2.5 Segregation and Concentration of Wastes;893
23.6.2.6;6.2.6 Good Operating Practices;894
23.6.2.7;6.2.7 Reduction of Air and Dust Problems;894
23.6.2.8;6.2.8 Waste Exchanges;895
23.6.3;6.3 In-Plant Treatment;896
23.6.3.1;6.3.1 Cyanide Destruction Technologies;896
23.6.3.2;6.3.2 Metal Removal;898
23.6.3.3;6.3.3 Solvent Recovery and Removal;901
23.6.4;6.4 End-of-Pipe Treatment;904
23.6.4.1;6.4.1 Primary Treatment;905
23.6.4.2;6.4.2 Secondary Biological Treatment;906
23.6.4.3;6.4.3 Tertiary Treatment;914
23.6.4.4;6.4.4 Residue Treatment and Waste Disposal;915
23.7;7 Case Study;916
23.7.1;7.1 Factory Profiles;917
23.7.2;7.2 Raw Materials and Production Process;917
23.7.3;7.3 Waste Generation and Characteristics;917
23.7.4;7.4 End-of-Pipe Treatment;919
23.8;Nomenclature;922
23.9;References;922
24; Appendix: Conversion Factors for Environmental Engineers;929
24.1;1 Constants and Conversion Factors;930
24.2;2 Basic and Supplementary Units;970
24.3;3 Derived Units and Quantities;971
24.4;4 Physical Constants;973
24.5;5 Properties of Water;973
24.6;Periodic Table of the Elements;973
25;Index;975




