E-Book, Englisch, Band 5, 483 Seiten
Wang Toward Functional Nanomaterials
1. Auflage 2010
ISBN: 978-0-387-77717-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 5, 483 Seiten
Reihe: Lecture Notes in Nanoscale Science and Technology
ISBN: 978-0-387-77717-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents a detailed overview of recent research developments on functional nanomaterials, including synthesis, characterization, and applications. This state-of-the-art book is multidisciplinary in scope and international in authorship.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Contributors;10
4;Fabrication of Oxide Nanoparticles by Ion Implantation and Thermal Oxidation;13
4.1;1 Introduction;14
4.2;2 A Short Historical Review of the IITO Method;16
4.3;3 Elemental Processes of the IITO Method;19
4.3.1;3.1 Formation of Metal Nanoparticles by Ion Implantation;19
4.3.1.1;3.1.1 Nucleation and Growth of Metal Nanoparticles;20
4.3.1.2;3.1.2 Metal--Nonmetal (M--NM) Transitions of Nanoparticles;23
4.3.1.3;3.1.3 High-Fluence Effects for Nanoparticle Formation;24
4.3.1.4;3.1.4 Substrates;26
4.3.1.5;3.1.5 Other Issues;27
4.3.2;3.2 Thermal Oxidation of Metal Nanoparticles in Matrix;28
4.3.2.1;3.2.1 Migration of Oxygen;28
4.3.2.2;3.2.2 Criteria for Reactions Between Implants and Substrate;29
4.3.2.3;3.2.3 &Thermodynamics& of the II&TO Method;30
4.4;4 Oxide Nanoparticle Formation;32
4.4.1;4.1 NiO Nanoparticles in SiO 2 : A Simple Embedded System;32
4.4.1.1;4.1.1 Fundamental Properties of NiO;32
4.4.1.2;4.1.2 Formation of NiO NPs and Discussion;33
4.4.2;4.2 ZnO Nanoparticles: NP Formation on the Substrate Surface;36
4.4.2.1;4.2.1 ZnO NP Formation by the Conventional II&TO Method;37
4.4.2.2;4.2.2 Comparison with Annealing in Vacuum;47
4.4.2.3;4.2.3 Detailed Formation Processes;49
4.4.2.4;4.2.4 ''Defect-Band-Free'' Luminescence;55
4.4.2.5;4.2.5 Fluence Dependence: The Best Fluence for ZnO NP Formation;58
4.4.2.6;4.2.6 Embedment of ZnO NPs into SiO 2 ;59
4.4.3;4.3 Selective Formation of CuO and Cu 2 O Nanoparticles;62
4.4.3.1;4.3.1 Basic Properties of CuO and Cu 2 O;64
4.4.3.2;4.3.2 Formation of CuO NPs by the Conventional II&TO Method;65
4.4.3.3;4.3.3 Formation of Cu 2 O NPs by the Two-Step II&TO Method;69
4.4.3.4;4.3.4 Selective Formation of Cu, CuO, and Cu 2 O NPs and the Optical Absorption;73
4.5;5 Discussion;76
4.6;6 Summary;80
4.7;References;83
5;Design of Solution-Grown ZnO Nanostructures;88
5.1;1 Introduction;89
5.2;2 Structural and Optical Properties of ZnO;90
5.3;3 Preparation of ZnO Nanosized Powders with Controlled Shape;93
5.3.1;3.1 Synthesis in Organic Solvents;93
5.3.2;3.2 Nanoparticle Preparation in Aqueous Solvent;96
5.4;4 Chemical Deposition of Nanostructured ZnO Films in Aqueous Solutions;97
5.4.1;4.1 Film Preparation in Alkaline Solutions;97
5.4.2;4.2 Electroless Deposition of ZnO Films;99
5.4.3;4.3 Thermal Decomposition of Hydroxide Precursors;100
5.4.3.1;4.3.1 Preparation of Nanostructured Films;100
5.4.3.2;4.3.2 Stimulated Emission of the Films;101
5.5;5 Hydrothermal Growth of ZnO Nanowhiskers on Zinc Foil;102
5.6;6 Electrochemical Preparation of Nanostructured ZnO Films;103
5.6.1;6.1 Electrodeposition of ZnO;103
5.6.1.1;6.1.1 Molecular Oxygen Precursor;104
5.6.1.2;6.1.2 Hydrogen Peroxide Precursor;106
5.6.1.3;6.1.3 Nitrate Ion Precursor;107
5.6.2;6.2 Electrochemical Growth of ZnO Nanorods and Nanowires;109
5.6.2.1;6.2.1 Nanorods;109
5.6.2.2;6.2.2 Nanowires;113
5.6.3;6.3 Mesoporous ZnO Thin Film Grown by Electroposition;116
5.6.3.1;6.3.1 Direct Growth;116
5.6.3.2;6.3.2 Dye-Assisted Growth;117
5.7;7 Polymer-Assisted ZnO Growth;120
5.8;8 Patterning of ZnO Nanostructures;122
5.9;9 ZnO Combined with Lanthanides for Visible Luminescence;123
5.9.1;9.1 ZnO/Lanthanide Mixed Films;124
5.9.2;9.2 ZnO/Lanthanide Complexes Hybrid Films;127
5.10;10 Conclusions;129
5.11;References;130
6;Self-Assembled Metal Nanostructures in Semiconductor Structures;137
6.1;1 Self-Assembling of Metal Nanostructures;139
6.1.1;1.1 Nanoclusters Formation;139
6.1.2;1.2 Effect of the Anisotropy on the Atomic Structure and Equilibrium Shape of Nanocrystals;143
6.1.3;1.3 Growth of Au Nanoclusters on Surfaces;147
6.1.4;1.4 Growth of Au Nanoclusters in SiO 2 ;152
6.1.5;1.5 Growth of Nanoclusters During ion Irradiation;155
6.2;2 Electronic Transport Properties of Metal NanoclustersBased Materials;162
6.2.1;2.1 Schottky Barriers in Metal Nanoclusters/Semiconductors Contacts;163
6.2.2;2.2 Rectifying Behavior of Au Nanoclusters Embedded in SiO 2 ;168
6.2.3;2.3 Electronic Collective Effects in Disordered Array of Nanocrystals;173
6.3;References;179
7;Nanocrystal-Based Polymer Composites as Novel FunctionalMaterials;182
7.1;1 Introduction;182
7.2;2 Strategy of Nanocomposites Preparation;184
7.3;3 Nanocrystal Functionalization;189
7.4;4 Nanocomposite Engineering;191
7.5;5 Nanocomposites as Functional Materials for Applications;194
7.6;6 Conclusion;196
7.7;References;197
8;Large-Scale Ab Initio Study of Size, Shape, and Doping Effects on Electronic Structure of Nanocrystals;202
8.1;1 Introduction;203
8.2;2 Method of Calculations;204
8.3;3 Size Dependence of Exciton Energies and Absorption Spectra;205
8.4;4 Ratios of BandGap Increases Between QWs and QDs;211
8.5;5 Shape Effects on Electronic States of Nanocrystals;212
8.6;6 Defect Properties of QDs;215
8.7;7 Conclusion;218
8.8;References;219
9;Chaotic Behavior Appearing in Dynamic Motions of NanoscaleParticles;221
9.1;1 Introduction;221
9.2;2 Experiment;222
9.3;3 Load and Velocity Dependence of Friction Force;222
9.3.1;3.1 Graphite Flake Case;222
9.3.2;3.2 Mica Flake Case;226
9.4;4 Energy Dissipation and Friction;228
9.5;5 Conclusion;229
9.6;References;230
10;Hydrogen Concentration, Bonding Configuration and Electron Emission Properties of Polycrystalline Diamond Films: From Micro- to Nanometric Grain Size;231
10.1;1 Introduction;231
10.2;2 The Polycrystalline Diamond Films: Brief Description of Deposition Methods and Microstructure of the Films;234
10.3;3 Hydrogen Atom Concentrations in Polycrystalline Diamond Films as a Function of Grain Size Studied by SIMS;235
10.4;4 Hydrogen Bonding Configuration in Diamond Film Bulk Studied by Raman Spectroscopy;238
10.4.1;4.1 Clarification of the Hydrogen-Associated Raman Peaks Through Modifications Induced by Isotopic Exchange;239
10.4.2;4.2 The Impact of Diamond Grain Size and Hydrogen Concentration on the Shape of the Raman Spectra;242
10.5;5 Hydrogen Bonding Configuration on Diamond film Surface Studied by HR-EELS;244
10.5.1;5.1 The Hydrogen and Carbon Bonding Configuration of Nanoscale-Defined Hydrogenated Polycrystalline Diamond Surface: The Assignment of HR-EELS Peaks;246
10.5.2;5.2 The Impact of Diamond Grain Size on the Shape of HR-EEL Spectra;248
10.6;6 Enhancement of Electron Emission from Near-Coalescent NanoMeter Thick Continuous HF CVD Diamond Films;257
10.7;7 Summary;260
10.8;References;261
11;Super-Resolution Optical Effects of Nanoscale Nonlinear Thin Film Structure and Ultrahigh-Density Information Storage;264
11.1;1 Introduction;264
11.2;2 Principle for Breaking Through Optical Diffraction Limit [ 5 ];265
11.3;3 Super-Resolution Optical Effects of Nanoscale Nonlinear Thin Film Structure and Ultrahigh-Density Information Storage;267
11.3.1;3.1 Super-Resolution Optical Storage Stemming from Internal Multi-Interference of Nonlinear Thin Film Structure;268
11.3.1.1;3.1.1 The Super-Resolution Principle [ 12 ];268
11.3.1.2;3.1.2 The Super-Resolution Optical Recording [ 12 ];273
11.3.2;3.2 Super-Resolution Optical Storage Stemming from Self-Focusing Thermal Lens Effect with a Nonlinear Thin Film Structure;274
11.3.2.1;3.2.1 Thermal Lens Principle for Measuring the Temperature Coefficient of Refractive Index;274
11.3.2.2;3.2.2 Measurement of Temperature Coefficient of Sb Thin Film [ 15 ];279
11.3.2.3;3.2.3 Super-Resolution Self-Focusing Thermal Lens Model of Nonlinear Thin Film Structure [ 23, 24 ];280
11.3.2.4;3.2.4 Near-Field Optical Simulation of Self-Focusing Thermal Lens [ 26 ];284
11.3.2.5;3.2.5 Super-Resolution Optical Information Storage with Self-Focusing Thermal Lens [ 26 ];286
11.4;4 Conclusion;287
11.5;References;289
12;Spin-Transfer and Current-Induced Spin Dynamics in Spin Valves: Diffusive Transport Regime;291
12.1;1 Introduction;292
12.2;2 Spin Current and Spin Accumulation in Layered Systems;293
12.2.1;2.1 Magnetic Films;294
12.2.2;2.2 Nonmagnetic Films;296
12.3;3 Boundary Conditions and Torque;296
12.4;4 Torque in a Spin valve Structure;299
12.5;5 CIMS and Its Relation to CPP-GMR;300
12.5.1;5.1 Spin-Transfer Torque in Co/Cu/Co Spin Valve;302
12.5.2;5.2 Limiting Case of Real Mixing Conductance;303
12.5.3;5.3 Controlled Normal and Inverse CIMS;305
12.5.4;5.4 Nonstandard Angular Dependence of the Spin Torque;308
12.5.5;5.5 Correlation Between Spin Transfer Torque and CPP-GMR;310
12.6;6 Spin Transfer-Induced Dynamics Macrospin Model;313
12.6.1;6.1 Critical Currents;314
12.6.2;6.2 Dynamics in Symmetric Spin Valve;315
12.6.3;6.3 Dynamics in Asymmetric Spin Valves;320
12.7;7 Conclusions;326
12.8;References;327
13;Self-Organized Surface Nanopatterning by Ion Beam Sputtering;329
13.1;1 Introduction;330
13.2;2 Fundamentals of Ion Sputtering;333
13.2.1;2.1 Introduction to Ion Sputtering;334
13.2.2;2.2 Applications of Ion Sputtering;334
13.2.3;2.3 Quantification of the Sputtering Process;335
13.2.4;2.4 Experimental Measurements of the Sputtering Yield;336
13.2.5;2.5 Theory of Sputtering;338
13.2.6;2.6 Experimental Considerations for Ion Sputtering;340
13.3;3 Experimental Observations of Surface Patterning by IBS;341
13.3.1;3.1 IBS Patterning Formation on Amorphous or Amorphizable Surfaces;341
13.3.1.1;3.1.1 Ripple Formation by Off-Normal Ion Incidence;342
13.3.1.2;3.1.2 Nanodot Patterning in Amorphous/Amorphizable Materials;351
13.3.2;3.2 Nanohole or Nanopit Patterning;362
13.3.3;3.3 General Considerations;363
13.3.4;3.4 Pattern Formation in Single-Crystal Metals by IBS;367
13.3.5;3.5 Pattern Formation in Thin Metal Films by IBS;369
13.4;4 Theoretical Approaches;370
13.4.1;4.1 Sigmund's Theory of Sputtering;370
13.4.2;4.2 Monte Carlo Type Models;373
13.4.3;4.3 Continuum Descriptions;374
13.4.3.1;4.3.1 Dynamics of the Surface Height;375
13.4.3.2;4.3.2 Coupling to Diffusive Surface Species;382
13.4.3.3;4.3.3 Oblique Incidence;384
13.4.3.4;4.3.4 Normal Incidence;386
13.4.3.5;4.3.5 Rotating Substrate;390
13.4.3.6;4.3.6 Comparison Between Continuum Models;390
13.5;5 Applications of IBS-Patterned Surfaces;392
13.6;6 Open Issues;395
13.7;References;396
14;Area-Selective Depositions of Self-assembled Monolayers on Patterned SiO2/Si Surfaces;405
14.1;1 Introduction;406
14.2;2 Patterning of SiO 2 Thin Films;406
14.2.1;2.1 Growth of SiO 2 Thin Films;406
14.2.2;2.2 Fabrication of Mask;408
14.2.3;2.3 SR-Stimulated Etching;412
14.3;3 Area-Selective Deposition of SAMs on SiO 2 /Si(100) Patterns;420
14.4;References;424
15;Virtual Synthesis of Electronic Nanomaterials: Fundamentals and Prospects;428
15.1;1 Introduction;430
15.1.1;1.1 Experimental Studies;431
15.1.1.1;1.1.1 Quantum Information Processing;431
15.1.1.2;1.1.2 Quantum Dots: Realization and Applications;432
15.1.2;1.2 Theoretical Foundation;435
15.2;2 Linear Response Theory of Charge Transport in Small Systems in External Electro-Magnetic Fields;438
15.2.1;2.1 Conservation Equations for the Space--Time Fourier Transforms of the Charge and Current Densities;441
15.2.1.1;2.1.1 The Generalized Susceptibility and Microcurrent--Microcurrent TTGFs;442
15.2.1.2;2.1.2 The Longitudal Sum Rule;444
15.2.2;2.2 The Charge Conservation Equation in Terms of the Electric Field Intensity;445
15.2.2.1;2.2.1 The Polarization Vector and the Tensor of the Dielectric Susceptibility;446
15.2.2.2;2.2.2 The Charge Density Conservation Equation in Terms of the Field;449
15.2.3;2.3 The Current Density Conservation Equation;449
15.2.4;2.4 The Longitudal Conductivity;452
15.2.5;2.5 Transversal Conductivity;453
15.2.5.1;2.5.1 The Induced Magnetic Moment and Magnetic Susceptibility;453
15.2.5.2;2.5.2 Explicit Expression for the Transversal Conductivity;455
15.2.5.3;2.5.3 Quantum Conductivity of Homogeneous Systems;456
15.2.6;2.6 Calculations of the Equilibrium TTGFs;457
15.3;3 Virtual Synthesis of Small Artificial Molecules with Predesigned Electronic Properties;460
15.3.1;3.1 Pyramidal Artificial Molecules of Ga with As and P;462
15.4;Summary;472
15.5;Appendix;473
15.6;References;474
16;Index;480




