Wang | Toward Functional Nanomaterials | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 5, 483 Seiten

Reihe: Lecture Notes in Nanoscale Science and Technology

Wang Toward Functional Nanomaterials


1. Auflage 2010
ISBN: 978-0-387-77717-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 5, 483 Seiten

Reihe: Lecture Notes in Nanoscale Science and Technology

ISBN: 978-0-387-77717-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents a detailed overview of recent research developments on functional nanomaterials, including synthesis, characterization, and applications. This state-of-the-art book is multidisciplinary in scope and international in authorship.

Wang Toward Functional Nanomaterials jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Contributors;10
4;Fabrication of Oxide Nanoparticles by Ion Implantation and Thermal Oxidation;13
4.1;1 Introduction;14
4.2;2 A Short Historical Review of the IITO Method;16
4.3;3 Elemental Processes of the IITO Method;19
4.3.1;3.1 Formation of Metal Nanoparticles by Ion Implantation;19
4.3.1.1;3.1.1 Nucleation and Growth of Metal Nanoparticles;20
4.3.1.2;3.1.2 Metal--Nonmetal (M--NM) Transitions of Nanoparticles;23
4.3.1.3;3.1.3 High-Fluence Effects for Nanoparticle Formation;24
4.3.1.4;3.1.4 Substrates;26
4.3.1.5;3.1.5 Other Issues;27
4.3.2;3.2 Thermal Oxidation of Metal Nanoparticles in Matrix;28
4.3.2.1;3.2.1 Migration of Oxygen;28
4.3.2.2;3.2.2 Criteria for Reactions Between Implants and Substrate;29
4.3.2.3;3.2.3 &Thermodynamics& of the II&TO Method;30
4.4;4 Oxide Nanoparticle Formation;32
4.4.1;4.1 NiO Nanoparticles in SiO 2 : A Simple Embedded System;32
4.4.1.1;4.1.1 Fundamental Properties of NiO;32
4.4.1.2;4.1.2 Formation of NiO NPs and Discussion;33
4.4.2;4.2 ZnO Nanoparticles: NP Formation on the Substrate Surface;36
4.4.2.1;4.2.1 ZnO NP Formation by the Conventional II&TO Method;37
4.4.2.2;4.2.2 Comparison with Annealing in Vacuum;47
4.4.2.3;4.2.3 Detailed Formation Processes;49
4.4.2.4;4.2.4 ''Defect-Band-Free'' Luminescence;55
4.4.2.5;4.2.5 Fluence Dependence: The Best Fluence for ZnO NP Formation;58
4.4.2.6;4.2.6 Embedment of ZnO NPs into SiO 2 ;59
4.4.3;4.3 Selective Formation of CuO and Cu 2 O Nanoparticles;62
4.4.3.1;4.3.1 Basic Properties of CuO and Cu 2 O;64
4.4.3.2;4.3.2 Formation of CuO NPs by the Conventional II&TO Method;65
4.4.3.3;4.3.3 Formation of Cu 2 O NPs by the Two-Step II&TO Method;69
4.4.3.4;4.3.4 Selective Formation of Cu, CuO, and Cu 2 O NPs and the Optical Absorption;73
4.5;5 Discussion;76
4.6;6 Summary;80
4.7;References;83
5;Design of Solution-Grown ZnO Nanostructures;88
5.1;1 Introduction;89
5.2;2 Structural and Optical Properties of ZnO;90
5.3;3 Preparation of ZnO Nanosized Powders with Controlled Shape;93
5.3.1;3.1 Synthesis in Organic Solvents;93
5.3.2;3.2 Nanoparticle Preparation in Aqueous Solvent;96
5.4;4 Chemical Deposition of Nanostructured ZnO Films in Aqueous Solutions;97
5.4.1;4.1 Film Preparation in Alkaline Solutions;97
5.4.2;4.2 Electroless Deposition of ZnO Films;99
5.4.3;4.3 Thermal Decomposition of Hydroxide Precursors;100
5.4.3.1;4.3.1 Preparation of Nanostructured Films;100
5.4.3.2;4.3.2 Stimulated Emission of the Films;101
5.5;5 Hydrothermal Growth of ZnO Nanowhiskers on Zinc Foil;102
5.6;6 Electrochemical Preparation of Nanostructured ZnO Films;103
5.6.1;6.1 Electrodeposition of ZnO;103
5.6.1.1;6.1.1 Molecular Oxygen Precursor;104
5.6.1.2;6.1.2 Hydrogen Peroxide Precursor;106
5.6.1.3;6.1.3 Nitrate Ion Precursor;107
5.6.2;6.2 Electrochemical Growth of ZnO Nanorods and Nanowires;109
5.6.2.1;6.2.1 Nanorods;109
5.6.2.2;6.2.2 Nanowires;113
5.6.3;6.3 Mesoporous ZnO Thin Film Grown by Electroposition;116
5.6.3.1;6.3.1 Direct Growth;116
5.6.3.2;6.3.2 Dye-Assisted Growth;117
5.7;7 Polymer-Assisted ZnO Growth;120
5.8;8 Patterning of ZnO Nanostructures;122
5.9;9 ZnO Combined with Lanthanides for Visible Luminescence;123
5.9.1;9.1 ZnO/Lanthanide Mixed Films;124
5.9.2;9.2 ZnO/Lanthanide Complexes Hybrid Films;127
5.10;10 Conclusions;129
5.11;References;130
6;Self-Assembled Metal Nanostructures in Semiconductor Structures;137
6.1;1 Self-Assembling of Metal Nanostructures;139
6.1.1;1.1 Nanoclusters Formation;139
6.1.2;1.2 Effect of the Anisotropy on the Atomic Structure and Equilibrium Shape of Nanocrystals;143
6.1.3;1.3 Growth of Au Nanoclusters on Surfaces;147
6.1.4;1.4 Growth of Au Nanoclusters in SiO 2 ;152
6.1.5;1.5 Growth of Nanoclusters During ion Irradiation;155
6.2;2 Electronic Transport Properties of Metal NanoclustersBased Materials;162
6.2.1;2.1 Schottky Barriers in Metal Nanoclusters/Semiconductors Contacts;163
6.2.2;2.2 Rectifying Behavior of Au Nanoclusters Embedded in SiO 2 ;168
6.2.3;2.3 Electronic Collective Effects in Disordered Array of Nanocrystals;173
6.3;References;179
7;Nanocrystal-Based Polymer Composites as Novel FunctionalMaterials;182
7.1;1 Introduction;182
7.2;2 Strategy of Nanocomposites Preparation;184
7.3;3 Nanocrystal Functionalization;189
7.4;4 Nanocomposite Engineering;191
7.5;5 Nanocomposites as Functional Materials for Applications;194
7.6;6 Conclusion;196
7.7;References;197
8;Large-Scale Ab Initio Study of Size, Shape, and Doping Effects on Electronic Structure of Nanocrystals;202
8.1;1 Introduction;203
8.2;2 Method of Calculations;204
8.3;3 Size Dependence of Exciton Energies and Absorption Spectra;205
8.4;4 Ratios of BandGap Increases Between QWs and QDs;211
8.5;5 Shape Effects on Electronic States of Nanocrystals;212
8.6;6 Defect Properties of QDs;215
8.7;7 Conclusion;218
8.8;References;219
9;Chaotic Behavior Appearing in Dynamic Motions of NanoscaleParticles;221
9.1;1 Introduction;221
9.2;2 Experiment;222
9.3;3 Load and Velocity Dependence of Friction Force;222
9.3.1;3.1 Graphite Flake Case;222
9.3.2;3.2 Mica Flake Case;226
9.4;4 Energy Dissipation and Friction;228
9.5;5 Conclusion;229
9.6;References;230
10;Hydrogen Concentration, Bonding Configuration and Electron Emission Properties of Polycrystalline Diamond Films: From Micro- to Nanometric Grain Size;231
10.1;1 Introduction;231
10.2;2 The Polycrystalline Diamond Films: Brief Description of Deposition Methods and Microstructure of the Films;234
10.3;3 Hydrogen Atom Concentrations in Polycrystalline Diamond Films as a Function of Grain Size Studied by SIMS;235
10.4;4 Hydrogen Bonding Configuration in Diamond Film Bulk Studied by Raman Spectroscopy;238
10.4.1;4.1 Clarification of the Hydrogen-Associated Raman Peaks Through Modifications Induced by Isotopic Exchange;239
10.4.2;4.2 The Impact of Diamond Grain Size and Hydrogen Concentration on the Shape of the Raman Spectra;242
10.5;5 Hydrogen Bonding Configuration on Diamond film Surface Studied by HR-EELS;244
10.5.1;5.1 The Hydrogen and Carbon Bonding Configuration of Nanoscale-Defined Hydrogenated Polycrystalline Diamond Surface: The Assignment of HR-EELS Peaks;246
10.5.2;5.2 The Impact of Diamond Grain Size on the Shape of HR-EEL Spectra;248
10.6;6 Enhancement of Electron Emission from Near-Coalescent NanoMeter Thick Continuous HF CVD Diamond Films;257
10.7;7 Summary;260
10.8;References;261
11;Super-Resolution Optical Effects of Nanoscale Nonlinear Thin Film Structure and Ultrahigh-Density Information Storage;264
11.1;1 Introduction;264
11.2;2 Principle for Breaking Through Optical Diffraction Limit [ 5 ];265
11.3;3 Super-Resolution Optical Effects of Nanoscale Nonlinear Thin Film Structure and Ultrahigh-Density Information Storage;267
11.3.1;3.1 Super-Resolution Optical Storage Stemming from Internal Multi-Interference of Nonlinear Thin Film Structure;268
11.3.1.1;3.1.1 The Super-Resolution Principle [ 12 ];268
11.3.1.2;3.1.2 The Super-Resolution Optical Recording [ 12 ];273
11.3.2;3.2 Super-Resolution Optical Storage Stemming from Self-Focusing Thermal Lens Effect with a Nonlinear Thin Film Structure;274
11.3.2.1;3.2.1 Thermal Lens Principle for Measuring the Temperature Coefficient of Refractive Index;274
11.3.2.2;3.2.2 Measurement of Temperature Coefficient of Sb Thin Film [ 15 ];279
11.3.2.3;3.2.3 Super-Resolution Self-Focusing Thermal Lens Model of Nonlinear Thin Film Structure [ 23, 24 ];280
11.3.2.4;3.2.4 Near-Field Optical Simulation of Self-Focusing Thermal Lens [ 26 ];284
11.3.2.5;3.2.5 Super-Resolution Optical Information Storage with Self-Focusing Thermal Lens [ 26 ];286
11.4;4 Conclusion;287
11.5;References;289
12;Spin-Transfer and Current-Induced Spin Dynamics in Spin Valves: Diffusive Transport Regime;291
12.1;1 Introduction;292
12.2;2 Spin Current and Spin Accumulation in Layered Systems;293
12.2.1;2.1 Magnetic Films;294
12.2.2;2.2 Nonmagnetic Films;296
12.3;3 Boundary Conditions and Torque;296
12.4;4 Torque in a Spin valve Structure;299
12.5;5 CIMS and Its Relation to CPP-GMR;300
12.5.1;5.1 Spin-Transfer Torque in Co/Cu/Co Spin Valve;302
12.5.2;5.2 Limiting Case of Real Mixing Conductance;303
12.5.3;5.3 Controlled Normal and Inverse CIMS;305
12.5.4;5.4 Nonstandard Angular Dependence of the Spin Torque;308
12.5.5;5.5 Correlation Between Spin Transfer Torque and CPP-GMR;310
12.6;6 Spin Transfer-Induced Dynamics Macrospin Model;313
12.6.1;6.1 Critical Currents;314
12.6.2;6.2 Dynamics in Symmetric Spin Valve;315
12.6.3;6.3 Dynamics in Asymmetric Spin Valves;320
12.7;7 Conclusions;326
12.8;References;327
13;Self-Organized Surface Nanopatterning by Ion Beam Sputtering;329
13.1;1 Introduction;330
13.2;2 Fundamentals of Ion Sputtering;333
13.2.1;2.1 Introduction to Ion Sputtering;334
13.2.2;2.2 Applications of Ion Sputtering;334
13.2.3;2.3 Quantification of the Sputtering Process;335
13.2.4;2.4 Experimental Measurements of the Sputtering Yield;336
13.2.5;2.5 Theory of Sputtering;338
13.2.6;2.6 Experimental Considerations for Ion Sputtering;340
13.3;3 Experimental Observations of Surface Patterning by IBS;341
13.3.1;3.1 IBS Patterning Formation on Amorphous or Amorphizable Surfaces;341
13.3.1.1;3.1.1 Ripple Formation by Off-Normal Ion Incidence;342
13.3.1.2;3.1.2 Nanodot Patterning in Amorphous/Amorphizable Materials;351
13.3.2;3.2 Nanohole or Nanopit Patterning;362
13.3.3;3.3 General Considerations;363
13.3.4;3.4 Pattern Formation in Single-Crystal Metals by IBS;367
13.3.5;3.5 Pattern Formation in Thin Metal Films by IBS;369
13.4;4 Theoretical Approaches;370
13.4.1;4.1 Sigmund's Theory of Sputtering;370
13.4.2;4.2 Monte Carlo Type Models;373
13.4.3;4.3 Continuum Descriptions;374
13.4.3.1;4.3.1 Dynamics of the Surface Height;375
13.4.3.2;4.3.2 Coupling to Diffusive Surface Species;382
13.4.3.3;4.3.3 Oblique Incidence;384
13.4.3.4;4.3.4 Normal Incidence;386
13.4.3.5;4.3.5 Rotating Substrate;390
13.4.3.6;4.3.6 Comparison Between Continuum Models;390
13.5;5 Applications of IBS-Patterned Surfaces;392
13.6;6 Open Issues;395
13.7;References;396
14;Area-Selective Depositions of Self-assembled Monolayers on Patterned SiO2/Si Surfaces;405
14.1;1 Introduction;406
14.2;2 Patterning of SiO 2 Thin Films;406
14.2.1;2.1 Growth of SiO 2 Thin Films;406
14.2.2;2.2 Fabrication of Mask;408
14.2.3;2.3 SR-Stimulated Etching;412
14.3;3 Area-Selective Deposition of SAMs on SiO 2 /Si(100) Patterns;420
14.4;References;424
15;Virtual Synthesis of Electronic Nanomaterials: Fundamentals and Prospects;428
15.1;1 Introduction;430
15.1.1;1.1 Experimental Studies;431
15.1.1.1;1.1.1 Quantum Information Processing;431
15.1.1.2;1.1.2 Quantum Dots: Realization and Applications;432
15.1.2;1.2 Theoretical Foundation;435
15.2;2 Linear Response Theory of Charge Transport in Small Systems in External Electro-Magnetic Fields;438
15.2.1;2.1 Conservation Equations for the Space--Time Fourier Transforms of the Charge and Current Densities;441
15.2.1.1;2.1.1 The Generalized Susceptibility and Microcurrent--Microcurrent TTGFs;442
15.2.1.2;2.1.2 The Longitudal Sum Rule;444
15.2.2;2.2 The Charge Conservation Equation in Terms of the Electric Field Intensity;445
15.2.2.1;2.2.1 The Polarization Vector and the Tensor of the Dielectric Susceptibility;446
15.2.2.2;2.2.2 The Charge Density Conservation Equation in Terms of the Field;449
15.2.3;2.3 The Current Density Conservation Equation;449
15.2.4;2.4 The Longitudal Conductivity;452
15.2.5;2.5 Transversal Conductivity;453
15.2.5.1;2.5.1 The Induced Magnetic Moment and Magnetic Susceptibility;453
15.2.5.2;2.5.2 Explicit Expression for the Transversal Conductivity;455
15.2.5.3;2.5.3 Quantum Conductivity of Homogeneous Systems;456
15.2.6;2.6 Calculations of the Equilibrium TTGFs;457
15.3;3 Virtual Synthesis of Small Artificial Molecules with Predesigned Electronic Properties;460
15.3.1;3.1 Pyramidal Artificial Molecules of Ga with As and P;462
15.4;Summary;472
15.5;Appendix;473
15.6;References;474
16;Index;480



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.