Buch, Englisch, 237 Seiten, Format (B × H): 161 mm x 245 mm, Gewicht: 1200 g
Predictive Methods for Analyzing Unstructured Information
Buch, Englisch, 237 Seiten, Format (B × H): 161 mm x 245 mm, Gewicht: 1200 g
ISBN: 978-0-387-95433-2
Verlag: Springer
Text mining searches for regularities, patterns or trends in natural language text. Inspired by data mining, which discovers major patterns from highly structured databases, text mining aims to extract useful knowledge from unstructured text. This book focuses on the concepts and methods needed to expand horizons beyond structured, numeric data to automated mining of text samples. This authoritative and highly accessible text/reference, written by a team of authorities on text mining, develops the foundation concepts, principles, and methods needed to expand beyond structured, numeric data to automated mining of text samples. Researchers, computer scientists, and advanced undergraduates and graduates with work and interests in data mining, machine learning, databases, and computational linguistics will find the work an essential resource.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Zeichen- und Zahlendarstellungen
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenkompression, Dokumentaustauschformate
Weitere Infos & Material
Overview of Text Mining.- From Textual Information to Numerical Vectors.- Using Text for Prediction.- Information Retrieval and Text Mining.- Finding Structure in a Document Collection.- Looking for Information in Documents.- Case Studies.- Emerging Directions.