E-Book, Englisch, 182 Seiten
Reihe: Springer Theses
Wielopolski Testing Molecular Wires
1. Auflage 2010
ISBN: 978-3-642-14740-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
A Photophysical and Quantum Chemical Assay
E-Book, Englisch, 182 Seiten
Reihe: Springer Theses
ISBN: 978-3-642-14740-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This is a major contribution to the field of charge transport through organic pi-conjugated molecules. Besides its impact on molecular electronics, the work also applies to the design and development of light harvesting, photoconversion and catalytic modules.
Autoren/Hrsg.
Weitere Infos & Material
1;Supervisor’s Foreword;7
2;Acknowledgments;9
3;Contents;11
4;Part I Introduction and Motivation;14
4.1;1 Introduction to Molecular Electronics;15
4.1.1;1.1…Present Technology;18
4.1.2;1.2…Limitations of Present Technology;18
4.1.3;References;20
4.2;2 Motivation---Focusing on Molecular Wires;21
4.2.1;References;22
5;Part II Theoretical Concepts;23
5.1;3 Concepts of Photoinduced Electron and Energy Transfer Processes Across Molecular Bridges;24
5.1.1;3.1…Introduction;24
5.1.2;3.2…Electron Transfer Mechanisms;25
5.1.2.1;3.2.1 Superexchange;27
5.1.2.2;3.2.2 Charge Hopping;30
5.1.2.3;3.2.3 Interplay of Mechanisms;32
5.1.3;3.3…Electronic Energy Transfer;32
5.1.3.1;3.3.1 Coulombic Energy Transfer;34
5.1.3.2;3.3.2 Exchange Energy Transfer;34
5.1.4;References;35
5.2;4 Molecule-Assisted Transport of Charges and Energy Across Donor--Wire--Acceptor Junctions;38
5.2.1;4.1…Mechanisms of Charge Transfer Through Molecular Wires;39
5.2.1.1;4.1.1 Superexchange Charge Transfer in Molecular Wires;40
5.2.1.2;4.1.2 Sequential Charge Transfer in Molecular Wires;41
5.2.2;4.2…Factors that Determine the Charge Transfer Mechanism;42
5.2.2.1;4.2.1 Electronic Coupling;42
5.2.2.1.1;4.2.1.1 Calculation of Electronic Coupling;42
5.2.2.2;4.2.2 Energy Matching;43
5.2.3;4.3…Specific Aspects of Photoinduced Electron Transfer in Organic pi -Conjugated Systems;45
5.2.3.1;4.3.1 Background;45
5.2.3.2;4.3.2 The Classical Marcus Theory;46
5.2.3.3;4.3.3 Photoexcitation and Relaxation Processes in Solution;49
5.2.3.3.1;4.3.3.1 Photoabsorption;49
5.2.3.3.2;4.3.3.2 The Franck--Condon Principle and Radiative Transitions;52
5.2.3.3.3;4.3.3.3 The Franck--Condon Principle and Radiationless Transitions;54
5.2.3.3.4;4.3.3.4 Relaxation Processes Following Photoexcitation;56
5.2.3.3.5;4.3.3.5 Characterization by Stationary Spectroscopy;58
5.2.3.3.6;4.3.3.6 Characterization by Time-Resolved Spectroscopy;58
5.2.3.3.7;4.3.3.7 Internal Conversion;59
5.2.3.4;4.3.4 Influence of the Solvation on the Electronic Relaxation Dynamics;59
5.2.3.4.1;4.3.4.1 Static Solvent Influence;60
5.2.3.4.2;4.3.4.2 Dynamic Solvent Influence;61
5.2.4;References;62
5.3;5 Examples of Molecular Wire Systems;66
5.3.1;5.1…Oligo(phenylenevinylene)s;66
5.3.2;5.2…Oligophenylenes;68
5.3.3;5.3…Oligo(thiophene)s;69
5.3.4;5.4…Photonic Wires;70
5.3.5;References;71
6;Part III Results and Discussion;73
6.1;6 Objective;74
6.1.1;References;79
6.2;7 Instruments and Methods;80
6.2.1;7.1…Photophysics;80
6.2.1.1;7.1.1 Absorption Spectroscopy;80
6.2.1.2;7.1.2 Steady-state Emission;80
6.2.1.3;7.1.3 Time-resolved Emission;80
6.2.1.4;7.1.4 Femtosecond Transient Absorption Spectroscopy;81
6.2.1.5;7.1.5 Nanosecond Laser Flash Photolysis;82
6.2.2;7.2…Chemicals;82
6.2.3;7.3…Molecular Modeling;83
6.2.4;References;84
6.3;8 Energy Transfer Systems;85
6.3.1;8.1…Linking two C60 Electron Acceptors to a Molecular Wire;85
6.3.1.1;8.1.1 C60--oPPE--C60---A Representative Example for Efficient Energy Transfer;85
6.3.1.2;8.1.2 Energy Transfer in C60--oligo(fluorene)--C60;89
6.3.1.2.1;8.1.2.1 Molecular Modeling;89
6.3.1.2.2;8.1.2.2 Photophysics;93
6.3.2;8.2…Tunable Excited State Deactivation;98
6.3.2.1;8.2.1 Photophysics;100
6.3.3;References;106
6.4;9 Electron Transfer Systems;107
6.4.1;9.1…p-Phenyleneethynylene Molecular Wires;107
6.4.1.1;9.1.1 exTTF--oPPE--C60 Donor--Acceptor Conjugates;108
6.4.1.1.1;9.1.1.1 Electrochemistry;108
6.4.1.1.2;9.1.1.2 Photophysics;109
6.4.1.1.3;9.1.1.3 Molecular Modeling;117
6.4.1.1.4;9.1.1.4 Summary;124
6.4.1.2;9.1.2 H2P/ZnP--oPPE--C60 Donor--Acceptor Conjugates;124
6.4.1.2.1;9.1.2.1 Absorption Studies;127
6.4.1.2.2;9.1.2.2 Molecular Modeling;128
6.4.1.2.3;9.1.2.3 Photophysics;133
6.4.1.2.4;9.1.2.4 Summary;138
6.4.1.3;9.1.3 Meta-Connectivity---Influence of Structure on Molecular Wire Properties;139
6.4.1.3.1;9.1.3.1 Photophysics;142
6.4.1.3.2;9.1.3.2 Summary;150
6.4.2;9.2…oligo-Fluorene Molecular Wires;153
6.4.2.1;9.2.1 exTTF--oFL--C60 Donor--Acceptor Conjugates;154
6.4.2.1.1;9.2.1.1 Photophysics;154
6.4.2.1.2;9.2.1.2 Molecular Modeling;158
6.4.2.1.3;9.2.1.3 Summary;164
6.4.2.2;9.2.2 ZnP--oFL--C60 and Ferrocene--oFL--C60 Donor--Acceptor Conjugates;165
6.4.2.2.1;9.2.2.1 ZnP--oFLn--C60;165
6.4.2.2.2;9.2.2.2 Fc--oFLn--C60;172
6.4.2.2.3;9.2.2.3 Summary;176
6.4.3;References;179
6.5;10 Conclusions and Outlook;181
7;Curriculum Vitae;187
8;Publications;189
8.1;Conference Contributions;190




