Buch, Englisch, Band 1186, 378 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1190 g
Reihe: Lecture Notes in Mathematics
Proceedings of a Workshop held in Bremen, November 12-15, 1984
Buch, Englisch, Band 1186, 378 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1190 g
Reihe: Lecture Notes in Mathematics
ISBN: 978-3-540-16458-6
Verlag: Springer Berlin Heidelberg
Springer Book Archives
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Lyapunov exponents: A survey.- Oscillation des produits de matrices aleatoires dont l'exposant de lyapounov est nul.- Unique ergodicity and random matrix products.- Positivity of the exponent for stationary sequences of matrices.- Characteristic exponents for random homeomorphisms of metric spaces.- Lyapunov exponents of linear stochastic systems.- Addendum a note on transitivity of coupled control systems.- Almost sure and moment stability for linear ito equations.- Almost sure instability of a class of linear stochastic systems with jump process coefficients.- On a generalization of the Lyapunov exponent of a second order linear stochastic differential equation.- Parameter dependence of the Lyapunov exponent for linear stochastic systems. A survey.- An example concerning the geometric significance of the rotation number — integrated density of states.- Lyapunov exponents for schrödinger operators with random, but deterministic potentials.- Lyapunov exponents and one-dimensional alloys.- Resonance states in disordered systems.- The Lyapounov index, the density of states and their regularity for general stochastic potentials.- Computations of the sum of positive Lyapunov exponents for the Lloyd model in a strip.- Statistics of reflected pulses.- Lyapunov exponents and invariant measures of stochastic systems on manifolds.- Survey: Lyapunov exponents for stochastic flows on manifolds.- Bounds for average Lyapunov exponents of gradient stochastic systems.- The Lyapunov spectrum of a stochastic flow of diffeomorphisms.- Lyapunov exponents and phase transitions in dynamical systems.- Coupling sensitivity and cliff in chaotic dynamics.