Wilf | Finite Sections of Some Classical Inequalities | Buch | 978-3-642-86714-9 | sack.de

Buch, Englisch, Band 52, 84 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 153 g

Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge

Wilf

Finite Sections of Some Classical Inequalities


Softcover Nachdruck of the original 1. Auflage 1970
ISBN: 978-3-642-86714-9
Verlag: Springer

Buch, Englisch, Band 52, 84 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 153 g

Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge

ISBN: 978-3-642-86714-9
Verlag: Springer


Hardy, Littlewood and P6lya's famous monograph on inequalities [17J has served as an introduction to hard analysis for many mathema­ ticians. Some of its most interesting results center around Hilbert's inequality and generalizations. This family of inequalities determines the best bound of a family of operators on /p. When such inequalities are restricted only to finitely many variables, we can then ask for the rate at which the bounds of the restrictions approach the uniform bound. In the context of Toeplitz forms, such research was initiated over fifty years ago by Szego [37J, and the chain of ideas continues to grow strongly today, with fundamental contributions having been made by Kac, Widom, de Bruijn, and many others. In this monograph I attempt to draw together these lines of research from the point of view of sharpenings of the classical inequalities of [17]. This viewpoint leads to the exclusion of some material which might belong to a broader-based discussion, such as the elegant work of Baxter, Hirschman and others on the strong Szego limit theorem, and the inclusion of other work, such as that of de Bruijn and his students, which is basically nonlinear, and is therefore in some sense disjoint from the earlier investigations. I am grateful to Professor Halmos for inviting me to prepare this volume, and to Professors John and Olga Todd for several helpful comments. Philadelphia, Pa. H.S.W.

Wilf Finite Sections of Some Classical Inequalities jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


I. Basic Results.- 1.1 Introduction.- 1.2 The Hilbert Matrix.- 1.3 Nonlinear Operators.- 1.4 Toeplitz Forms.- II. Sections of Toeplitz and Hilbert Forms.- 2.1 Integral Operators.- 2.2 Proof for the Rational Fourier Transform-Continued.- 2.3 Statement of the Main Theorem and Proof by Approximation.- 2.4 Generalizations.- 2.5 Hilbert’s Inequality Revisited.- 2.6 Homogeneous Kernels of Degree -1.- III. Hankel Forms.- 3.1 Introduction.- 3.2 Asymptotic Growth of Orthogonal Polynomials.- 3.3 The Lowest Eigenvalue of Sections of a Moments Matrix.- 3.4 Generalizations.- 3.5 Upper Bounds.- 3.6 Spectral Density.- 3.7 Hankel Determinants.- IV. Nonlinear Theory.- 4.1 Introduction: A Minimax Principle in lp.- 4.2 Carleman’s Inequality.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.