Wills / Alouani / Andersson | Full-Potential Electronic Structure Method | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 167, 200 Seiten

Reihe: Springer Series in Solid-State Sciences

Wills / Alouani / Andersson Full-Potential Electronic Structure Method

Energy and Force Calculations with Density Functional and Dynamical Mean Field Theory
1. Auflage 2010
ISBN: 978-3-642-15144-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Energy and Force Calculations with Density Functional and Dynamical Mean Field Theory

E-Book, Englisch, Band 167, 200 Seiten

Reihe: Springer Series in Solid-State Sciences

ISBN: 978-3-642-15144-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This is a book describing electronic structure theory and application within the framework of a methodology implemented in the computer code RSPt. In 1986, when the code that was to become RSPt was developed enough to be useful, it was one of the ?rst full-potential, all-electron, relativistic implem- tations of DFT (density functional theory). While RSPt was documented p- asitically in many publications describing the results of its application, it was many years before a publication explicitly describing aspects of the method appeared. In the meantime, several excellent all-electron, full-potential me- ods had been developed, published, and become available. So why a book about RSPt now? The code that became RSPt was initially developed as a personal research tool, rather than a collaborative e?ort or as a product. As such it required some knowledge of its inner workings to use, and as it was meant to be m- imally ?exible, the code required experience to be used e?ectively. These - tributes inhibited, but did not prevent, the spread of RSPt as a research tool. While applicable across the periodic table, the method is particularly useful in describing a wide range of materials, including heavier elements and c- pounds, and its ?exibility provides targeted accuracy and a convenient and accurate framework for implementing and assessing the e?ect of new models.

Wills / Alouani / Andersson Full-Potential Electronic Structure Method jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Part I Formalisms;12
3.1;1 Introductory Information;13
3.1.1;1.1 Objectives and What You Will Learn from Reading This Book;13
3.1.2;1.2 On Units;14
3.1.3;1.3 Obtaining RSPt and the RSPt Web Site;14
3.1.4;1.4 A Short Comment on the History of Linear Muffin-Tin Orbitals and RSPt;14
3.2;2 Density Functional Theory and the Kohn--Sham Equation;17
3.2.1;2.1 The Many-Particle Problem;18
3.2.2;2.2 Early Attempts to Solve the Many-Particle Problem;20
3.2.2.1;2.2.1 Free Electron Model;20
3.2.2.2;2.2.2 The Hartree and Hartree--Fock Approaches;20
3.2.2.3;2.2.3 Thomas--Fermi Theory;21
3.2.3;2.3 Density Functional Theory;22
3.2.3.1;2.3.1 Hohenberg--Kohn Theory;22
3.2.3.2;2.3.2 The Kohn--Sham Equation;24
3.2.3.3;2.3.3 Approximations to Exc[n];26
3.3;3 Consequences of Infinite Crystals and Symmetries;30
3.4;4 Introduction to Electronic Structure Theory;34
3.4.1;4.1 Born--Oppenheimer Approximation and One-Electron Theory;34
3.4.2;4.2 Born--von Karman Boundary Condition and Bloch Waves;34
3.4.3;4.3 Energy Bands and the Fermi Level;35
3.4.4;4.4 Different Types of k-Space Integration;36
3.4.5;4.5 Self-Consistent Fields;40
3.4.6;4.6 Rayleigh--Ritz Variational Procedure;42
3.5;5 Linear Muffin-Tin Orbital Method in the Atomic Sphere Approximation;44
3.5.1;5.1 Muffin-Tin Methods;44
3.5.1.1;5.1.1 The Korringa, Kohn, and Rostoker (KKR) Method;45
3.5.1.2;5.1.2 The KKR-ASA Method;48
3.5.1.3;5.1.3 The LMTO-ASA Method;49
3.5.1.4;5.1.4 Matrix Elements of the Hamiltonian;51
3.5.1.5;5.1.5 Logarithmic Derivatives and Choice of the Linearization Energies;53
3.5.1.6;5.1.6 Advantages of LMTO-ASA Method;54
3.6;6 The Full-Potential Electronic Structure Problem and RSPt;56
3.6.1;6.1 General Aspects;56
3.6.1.1;6.1.1 Notation;56
3.6.1.2;6.1.2 Dividing Space: The Muffin-Tin Geometry;58
3.6.1.3;6.1.3 A Note on the Language of FPLMTO Methods;58
3.6.2;6.2 Symmetric Functions in RSPt;59
3.6.2.1;6.2.1 The Fourier Grid for Symmetric Functions in RSPt;61
3.6.3;6.3 Basis Functions;61
3.6.3.1;6.3.1 Muffin-Tin Orbitals;61
3.6.3.2;6.3.2 FP-LMTO Basis Functions;62
3.6.3.3;6.3.3 Choosing a Basis Set;67
3.6.3.4;6.3.4 Choosing Basis Parameters;67
3.6.4;6.4 Matrix Elements;71
3.6.4.1;6.4.1 Muffin-Tin Matrix Elements;71
3.6.4.2;6.4.2 Interstitial Matrix Elements;72
3.6.5;6.5 Charge Density;75
3.6.6;6.6 Core States;76
3.6.7;6.7 Potential;76
3.6.7.1;6.7.1 Coulomb Potential;76
3.6.7.2;6.7.2 Density Gradients;78
3.6.8;6.8 All-Electron Force Calculations;78
3.6.8.1;6.8.1 Symmetry;78
3.6.8.2;6.8.2 Helmann--Feynman and Incomplete Basis Set Contributions;79
3.7;7 Dynamical Mean Field Theory;83
3.7.1;7.1 Strong Correlations;83
3.7.2;7.2 LDA/GGA+DMFT Method;84
3.7.2.1;7.2.1 LDA/GGA+U Hamiltonian;85
3.7.2.2;7.2.2 LDA/GGA+DMFT Equations;86
3.7.3;7.3 Implementation;88
3.7.3.1;7.3.1 Using the LMTO Basis Set;89
3.7.3.2;7.3.2 Correlated Orbitals;90
3.7.3.3;7.3.3 Other Technical Details;90
3.7.4;7.4 Examples;91
3.7.4.1;7.4.1 Body-Centered Cubic Iron;91
3.7.4.2;7.4.2 Systems Close to Localization, the Hubbard-I Approximation;93
3.8;8 Implementation;96
3.8.1;8.1 Fortran-C Interface;96
3.8.2;8.2 Diagonalization;97
3.8.3;8.3 Fast Fourier Transforms;98
3.8.4;8.4 Parallelization;99
3.9;9 Obtaining RSPt from the Web;101
3.9.1;9.1 Installing RSPt;101
3.9.2;9.2 Running RSPt;102
4;Part II Applications;104
4.1;10 Total Energy and Forces: Some Numerical Examples;105
4.1.1;10.1 Equation of State;105
4.1.1.1;10.1.1 Convergence;109
4.1.2;10.2 Phonon Calculations;110
4.2;11 Chemical Bonding of Solids;114
4.2.1;11.1 Electron Densities;115
4.2.2;11.2 Crystal Orbital Overlap Population (COOP);115
4.2.3;11.3 Equilibrium Volumes of Materials;118
4.2.3.1;11.3.1 Transition Metals;119
4.2.3.2;11.3.2 Lanthanides and Actinides;120
4.2.3.3;11.3.3 Compounds;123
4.2.4;11.4 Cohesive Energy;124
4.2.5;11.5 Structural Stability and Pressure-Induced Phase Transitions;125
4.2.5.1;11.5.1 An sp-Bonded Material, Ca;125
4.2.5.2;11.5.2 Transition Metals;127
4.2.5.3;11.5.3 Systems with f-Electrons;128
4.2.6;11.6 Valence Configuration of f-Elements;129
4.2.7;11.7 Elastic Constants;131
4.3;12 Magnetism;135
4.3.1;12.1 Spin and Orbital Moments of Itinerant Electron Systems;136
4.3.1.1;12.1.1 Symmetry Aspects of Relativistic Spin-Polarized Calculations;138
4.3.1.2;12.1.2 Elements and Compounds;138
4.3.1.3;12.1.3 Surfaces;140
4.3.2;12.2 Magnetic Anisotropy Energy;141
4.3.2.1;12.2.1 k-Space Convergence;142
4.3.2.2;12.2.2 MAE of hcp Gd;143
4.3.3;12.3 Magnetism of Nano-objects;144
4.4;13 Excitated State Properties;146
4.4.1;13.1 Phenomenology;146
4.4.1.1;13.1.1 Index of Refraction and Attenuation Coefficient;149
4.4.1.2;13.1.2 Reflectivity;149
4.4.1.3;13.1.3 Absorption Coefficient;150
4.4.1.4;13.1.4 Energy Loss;150
4.4.1.5;13.1.5 Faraday Effect;150
4.4.1.6;13.1.6 Magneto-optical Kerr Effect;151
4.4.2;13.2 Excited States with DFT: A Contradiction in Terms?;152
4.4.3;13.3 Quasiparticle Theory versus the Local Density Approximation;153
4.4.4;13.4 Calculation of the Dielectric Function;155
4.4.4.1;13.4.1 Dynamical Dielectric Function;155
4.4.4.2;13.4.2 Momentum Matrix Elements;157
4.4.4.3;13.4.3 Velocity Operator and Sum Rules;159
4.4.5;13.5 Optical Properties of Semiconductors;160
4.4.6;13.6 Optical Properties of Metals;163
4.4.7;13.7 Magneto-optical Properties;165
4.4.8;13.8 X-Ray Absorption and X-Ray Magnetic Circular Dichroism;167
4.4.8.1;13.8.1 The XMCD Formalism;168
4.4.8.2;13.8.2 The XMCD Sum Rules;171
4.5;14 A Database of Electronic Structures;180
4.5.1;14.1 Database Generation;180
4.5.2;14.2 Data-Mining: An Example from Scintillating Materials;181
4.6;15 Future Developments and Outlook;183
5;References;186
6;Index;194



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.