• Neu
Wu / Dong | Distributed Linguistic Representations and Decision Making | E-Book | sack.de
E-Book

E-Book, Englisch, 205 Seiten

Reihe: Uncertainty and Operations Research

Wu / Dong Distributed Linguistic Representations and Decision Making


1. Auflage 2025
ISBN: 978-981-964936-5
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 205 Seiten

Reihe: Uncertainty and Operations Research

ISBN: 978-981-964936-5
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book provides a comprehensive perspective on the development of distributed linguistic representations in decision making, including the taxonomy of existing distributed linguistic representations, the key elements, and the classifications. It systematically investigates the formation of distributed linguistic representations and the methodology for the distributed linguistic information transformations and unifications, as well as the fusion and consensus reaching. This book studies the distributed linguistic information in MADM and the PIS-based applications of distributed linguistic information processing in decision making. Distributed linguistic representations are powerful tools for modelling the uncertainty and complexity of preference information in linguistic decision making. This book is written for researchers and postgraduates interested in linguistic decision making. Readers will find out lots of clear cues for distributed linguistic representations and distributed linguistic methodology to support decision making.

Wu / Dong Distributed Linguistic Representations and Decision Making jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- Distributed Linguistic Information Transformations and Unifications.- Distributed linguistic Information Fusion and Consensus.- Distributed Linguistic Multiple Attribute Decision Making.- Personalized Individual Semantics for Distributed Linguistic Representation.- Classification and Discussion.


Yuzhu Wu received the M.S. degree and the Ph.D. degree in management science and engineering from Sichuan University, Chengdu, China, in 2016 and 2019, respectively. She is currently an associate professor at the School of Business Administration, Research Institute of Big Data, Southwestern University of Finance and Economics, Chengdu, China. She has published in several journals and conference proceedings, including IEEE Transactions on Cybernetics, Information Fusion, Knowledge-Based Systems, and Computer & Industrial Engineering. Her research interests include decision making, information fusion, and computing with words.

Yucheng Dong received the B.S. and M.S. degrees in mathematics from Chongqing University, Chongqing, China, in 2002 and 2004, respectively, and the Ph.D. degree in management from Xi’an Jiaotong University, Xi’an, China, in 2008. He is currently a professor with the Business School, Sichuan University, Chengdu, China. He has authored or co-authored more than 200 international journal papers in some refereed journals. He won the 2021 Clemen-Kleinmuntz Decision Analysis Best Paper Award (INFORMS) and 2022 IEEE TFS Outstanding Paper Award (IEEE CIS). His current research interests include decision analysis and human dynamics. Prof. Dong is an area editor/associate editor of Computers and Industrial Engineering, Group Decision and Negotiation, IEEE Transactions on Artificial Intelligence, IEEE Transactions on Systems, Man, and Cybernetics: Systems, and Information Fusion. He has been identified by Clarivate as a Highly Cited Researcher in the field of computer science.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.