Wünsch | Differentialgeometrie | Buch | 978-3-8154-2095-9 | sack.de

Buch, Deutsch, 208 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 375 g

Reihe: Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte

Wünsch

Differentialgeometrie

Kurven und Flächen
1997
ISBN: 978-3-8154-2095-9
Verlag: Vieweg+Teubner Verlag

Kurven und Flächen

Buch, Deutsch, 208 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 375 g

Reihe: Mathematik für Ingenieure und Naturwissenschaftler, Ökonomen und Landwirte

ISBN: 978-3-8154-2095-9
Verlag: Vieweg+Teubner Verlag


Die Geschichte der Differentialgeometrie ist eng mit der Entwicklung der Infini­ tesimalrechnung und der analytischen Geometrie einerseits, mit der Geodäsie, der Kartographie und der Physik andererseits verknüpft. Sie ist zwar durch Idealisierung der Erfahrungswelt entstanden, hat sich aber im Laufe der letzten beiden Jahrhunderte zu einer deduktiven, mit strengen Beweisen arbeitenden Wissenschaft herausgebildet. Heute sind zahlreiche Disziplinen der Mathema­ tik, aber auch der Physik und Technik mit differentialgeometrischen Begriffs­ bildungen durchsetzt. Diese interdisziplinäre Verzahnung -man denke etwa an die Darstellung geometrischer Objekte mit den Methoden der Numerik und Informatik (CAGD) oder an die Geometrisierung der modernen Physik -hält unvermindert an. Mit dem vorliegenden Buch wird einem möglichst großen Interessentenkreis eine brauchbare Grundlage für eine klassisch-und anwendungsorientierte Kurven­ und Flächentheorie geliefert. In der Differentialgeometrie kann ein Studieren­ der die in der Differential- und Integralrechnung sowie in der analytischen Geometrie erworbenen Techniken anwenden und geometrische Vorstellungen entwickeln. Dem Leser sollen Brücken zwischen Theorie und Praxis aufgezeigt werden. Im Vordergrund stehen die lokale Differentialgeometrie und ihre An­ wendungsmöglichkeiten, wobei lokale und globale Aspekte klar unterschieden werden. Gelegentlich wird dem technisch Wichtigen der Vorrang vor dem geo­ metrisch Wertvollen eingeräumt. Gleichwohl sollen die technischen Anwendun­ gen nicht von den geometrischen Grundgedanken ablenken. Differentialgeo­ metrie wird eben nicht nur als Grundlage technischer Bildung, sondern auch wegen ihres Stellenwertes im Rahmen der Mathematik und ihrer kulturellen Bedeutung betrieben.

Wünsch Differentialgeometrie jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


0 Vorbereitungen.- 0.1 Der Euklidische Raum IR3.- 0.2 Vektorfunktionen.- 1 Lokale Kurventheorie.- 1.1 Der Kurvenbegriff.- 1.2 Bogenlänge.- 1.3 Begleitendes Dreibein, Krümmung und Torsion.- 1.4 Frenetsche Gleichungen.- 1.5 Fundamentalsatz der Kurventheorie, Invarianten.- 1.6 Krümmung und Torsion bei beliebiger Parametrisierung.- 1.7 Anwendungen in der Mechanik.- 2 Ebene Kurven.- 2.1 Darstellungsformen.- 2.2 Singuläre Punkte.- 2.3 Fraktale Geometrie.- 2.4 Evolute und Evolvente.- 2.5 Einige bedeutende ebene Kurven.- 3 Globale Eigenschaften ebener Kurven.- 3.1 Die isoperimetrische Ungleichung.- 3.2 Der Umlaufsatz.- 3.3 Konvexe Kurven und Vierscheitelsatz.- 4 Lokale Flächentheorie.- 4.1 Der Flächenbegriff.- 4.2 Tangentialebene, Gaußsches begleitendes Dreibein.- 4.3 Die erste Fundamentalform.- 4.4 Die zweite Fundamentalform.- 4.5 Die Krümmungen einer Fläche.- 4.6 Ableitungsgleichungen, Theorema egregium, Fundamentalsatz.- 4.7 Geodätische Krümmung, geodätische Linien.- 5 Spezielle Flächen.- 5.1 Regelfächen.- 5.2 Drehflächen.- 5.3 Drehflächen konstanter Gaußscher Krümmung.- 5.4 Nichteuklidische Geometrie.- 5.5 Schraubflächen.- 5.6 Minimalflächen.- 5.7 Flächen konstanter mittlerer Krümmung.- 6 Abbildungen von Flächen.- 6.1 Isometrische Abbildungen.- 6.2 Konforme Abbildungen.- 6.3 Weitere Abbildungen von Flächen.- 6.4 Kartennetzentwürfe.- 7 Globale Eigenschaften von Flächen.- 7.1 Der Integralsatz von Gauß-Bonnet.- 7.2 Eiflächen.- 8 Ausblick: Weitere Anwendungen der Differentialgeometrie.- 9 Abriß zur Geschichte der Differentialgeometrie.- Lösungen der Aufgaben.- Literatur.- Bildquellennachweis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.