E-Book, Englisch, 284 Seiten
Xie / Cong / Sapatnekar Three-Dimensional Integrated Circuit Design
1. Auflage 2009
ISBN: 978-1-4419-0784-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
EDA, Design and Microarchitectures
E-Book, Englisch, 284 Seiten
Reihe: Integrated Circuits and Systems
ISBN: 978-1-4419-0784-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
We live in a time of great change. In the electronics world, the last several decades have seen unprecedented growth and advancement, described by Moore's law. This observation stated that transistor density in integrated circuits doubles every 1. 5-2 years. This came with the simultaneous improvement of individual device perf- mance as well as the reduction of device power such that the total power of the resulting ICs remained under control. No trend remains constant forever, and this is unfortunately the case with Moore's law. The trouble began a number of years ago when CMOS devices were no longer able to proceed along the classical scaling trends. Key device parameters such as gate oxide thickness were simply no longer able to scale. As a result, device o- state currents began to creep up at an alarming rate. These continuing problems with classical scaling have led to a leveling off of IC clock speeds to the range of several GHz. Of course, chips can be clocked higher but the thermal issues become unmanageable. This has led to the recent trend toward microprocessors with mul- ple cores, each running at a few GHz at the most. The goal is to continue improving performance via parallelism by adding more and more cores instead of increasing speed. The challenge here is to ensure that general purpose codes can be ef?ciently parallelized. There is another potential solution to the problem of how to improve CMOS technology performance: three-dimensional integrated circuits (3D ICs).
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;5
2;Preface;7
3;Contents;9
4;Contributors;10
5;1 Introduction;12
5.1;References;24
6;2 3D Process Technology Considerations;25
6.1;2.1 Introduction;25
6.2;2.2 Background: Early Steps in the Emergence of 3D Integration;27
6.3;2.3 Process Factors That Impact State-of-the-Art 3D Design;28
6.3.1;2.3.1 Strata Orientation: Face-to-Back vs. Face-to-Face;28
6.3.1.1;2.3.1.1 Face-to-Back;28
6.3.1.2;2.3.1.2 Face-to-Face;29
6.3.2;2.3.2 Inter-strata Alignment: Tolerances for Inter-layer Connections;30
6.3.3;2.3.3 Bonding-Interface Design;32
6.3.3.1;2.3.3.1 Copper-to-Copper Compression Bonding;32
6.3.3.2;2.3.3.2 Hybrid Cu/Adhesive Bonding (Transfer-Join);32
6.3.3.3;2.3.3.3 Oxide-Fusion Bonding;34
6.3.4;2.3.4 TSV Dimensions: Design Point Selection;35
6.3.4.1;2.3.4.1 Design Considerations for Tungsten and Copper TSVs;35
6.3.4.2;2.3.4.2 Ultra-High Density Vias Using SOI-Based 3D Integration;37
6.3.5;2.3.5 Via-Process Integration and a Reclassification of Via Types;38
6.3.5.1;2.3.5.1 Pre-backend Frontside Via (Type F1);39
6.3.5.2;2.3.5.2 Post-backend Frontside Via (Type F2);40
6.3.5.3;2.3.5.3 Backside Via (After Wafer Thinning, Type B);40
6.4;2.4 Conclusion;40
6.5;References;41
7;3 Thermal and Power Delivery Challenges in 3D ICs;43
7.1;3.1 Introduction;43
7.2;3.2 Thermal Issues in 3D ICs;44
7.2.1;3.2.1 The Thermal PDE;44
7.2.2;3.2.2 Steady-State Thermal Analysis Algorithms;45
7.2.2.1;3.2.2.1 Formulation of the FDM Equations;46
7.2.3;3.2.3 The Finite Element Method;49
7.2.4;3.2.4 Thermal Optimization of 3D Circuits;52
7.3;3.3 Power Delivery in 3D ICs;53
7.3.1;3.3.1 The Basics of Power Delivery;53
7.3.2;3.3.2 Three-Dimensional IC Power Delivery: Modeling and Challenges;55
7.3.3;3.3.3 Design Techniques for Controlling PSN Noise;59
7.3.3.1;3.3.3.1 On-Chip Voltage Regulation;59
7.3.3.2;3.3.3.2 Z -axis Power Delivery;60
7.3.3.3;3.3.3.3 Multistory Power Delivery;61
7.3.4;3.3.4 CAD Techniques for Controlling PSN Noise;64
7.3.4.1;3.3.4.1 Decap Allocation;64
7.3.4.2;3.3.4.2 Automated MSPD Assignments for 3D ICs;66
7.4;3.4 Conclusion;68
7.5;References;68
8;4 Thermal-Aware 3D Floorplan;72
8.1;4.1 Introduction;72
8.2;4.2 Problem Formulation;73
8.2.1;4.2.1 3D Floorplanning with 2D Blocks;74
8.2.2;4.2.2 3D Floorplanning with 3D Blocks;75
8.3;4.3 Representations for 3D Floorplanning with 2D Blocks;76
8.3.1;4.3.1 Basic Representations for 2D Packing;76
8.3.1.1;4.3.1.1 Slicing Structure;77
8.3.1.2;4.3.1.2 Mosaic Structure;78
8.3.1.3;4.3.1.3 General Structure;79
8.3.1.4;4.3.1.4 Compact Structure;80
8.3.2;4.3.2 Analysis of Different Representations;82
8.3.2.1;4.3.2.1 Complexity;82
8.3.2.2;4.3.2.2 Redundancy;84
8.3.2.3;4.3.2.3 Suitability for 3D Design;86
8.4;4.4 Representations for the 3D Floorplan with 3D Blocks;86
8.4.1;4.4.1 3D Slicing Tree;87
8.4.2;4.4.2 3D Cbl;87
8.4.3;4.4.3 Sequence Triple;89
8.4.4;4.4.4 Analysis of Various Representations;91
8.5;4.5 Optimization Techniques;92
8.5.1;4.5.1 Simulated Annealing;93
8.5.2;4.5.2 SA-Based 3D Floorplanning with 2D Blocks;94
8.5.3;4.5.3 SA-Based 3D Floorplanning with 3D Blocks;95
8.5.4;4.5.4 Analytical Approach;97
8.6;4.6 Effects of Various 3D Floorplanning Techniques;100
8.6.1;4.6.1 Effects of 3D Floorplanning with 2D Blocks;100
8.6.2;4.6.2 Effects of 3D Floorplanning with 3D Blocks;102
8.7;4.7 Summary and Conclusion;104
8.8;4.8 Appendix: Design of Folded 3D Components;105
8.9;References;109
9;5 Thermal-Aware 3D Placement;112
9.1;5.1 Introduction;112
9.1.1;5.1.1 Problem Formulation;113
9.1.1.1;5.1.1.1 Wirelength Objective Function;113
9.1.1.2;5.1.1.2 Overlap-Free Constraints;114
9.1.1.3;5.1.1.3 Thermal Awareness;115
9.1.2;5.1.2 Overview of Existing 3D Placement Techniques;115
9.2;5.2 Partitioning-Based Techniques;116
9.3;5.3 Quadratic Uniformity Modeling Techniques;119
9.3.1;5.3.1 Wirelength Objective Function;121
9.3.2;5.3.2 Cell Distribution Cost Function;121
9.3.3;5.3.3 Thermal Distribution Cost Function;123
9.4;5.4 Multilevel Placement Technique;124
9.4.1;5.4.1 3D Placement Flow;124
9.4.2;5.4.2 Analytical Placement Engine;124
9.4.2.1;5.4.2.1 Relaxation of Discrete Variables;125
9.4.2.2;5.4.2.2 Log-Sum-Exp Wirelength;125
9.4.2.3;5.4.2.3 TS Via Number;126
9.4.2.4;5.4.2.4 Density Penalty Function;126
9.4.3;5.4.3 Multilevel Framework;130
9.5;5.5 Transformation-Based Techniques;130
9.5.1;5.5.1 Local Stacking Transformation Scheme;131
9.5.2;5.5.2 Folding Transformation Schemes;132
9.5.3;5.5.3 Window-Based Stacking/Folding Transformation Scheme;133
9.6;5.6 Legalization and Detailed Placement Techniques;134
9.6.1;5.6.1 Coarse Legalization;134
9.6.2;5.6.2 Detailed Legalization;136
9.6.2.1;5.6.2.1 DAG-Based Legalization;136
9.6.2.2;5.6.2.2 Tetris-Style Legalization;136
9.6.3;5.6.3 Layer Reassignment Through RCN Graph;138
9.6.3.1;5.6.3.1 Conflict-Net Graph;138
9.6.3.2;5.6.3.2 Relaxed Non-overlap Constraint;139
9.7;5.7 3D Placement Flow;139
9.8;5.8 Effects of Various 3D Placement Techniques;140
9.8.1;5.8.1 Trade-Offs Between Wirelength and TS Via Number;140
9.8.2;5.8.2 Effects of Thermal Optimization;145
9.8.2.1;5.8.2.1 Effects of the Thermal-Aware Net Weights on Temperature;145
9.8.2.2;5.8.2.2 Effects of the Legalization on Temperature;146
9.9;5.9 Impact of 3D Placement on Wirelength and Repeater Usage;146
9.9.1;5.9.1 2D/3D Placers and Repeater Estimation;147
9.9.2;5.9.2 Experimental Setup and Results;147
9.10;5.10 Summary and Conclusion;149
9.11;References;151
10;6 Thermal Via Insertion and Thermally Aware Routing in 3D ICs;154
10.1;6.1 Introduction;154
10.2;6.2 Thermal Vias;155
10.3;6.3 Inserting Thermal Vias into a Placed Design;156
10.4;6.4 Routing Algorithms;161
10.4.1;6.4.1 A Multilevel Approach;162
10.4.2;6.4.2 A Two-Phase Approach Using Linear Programming;164
10.5;6.5 Conclusion;168
10.6;References;168
11;7 Three-Dimensional Microprocessor Design;170
11.1;7.1 Introduction;170
11.2;7.2 Stacking Complete Modules;171
11.2.1;7.2.1 Three-Dimensional Stacked Caches;172
11.2.2;7.2.2 Optional Functionality;175
11.2.2.1;7.2.2.1 Introspective 3D Processors;175
11.2.2.2;7.2.2.2 Reliable 3D Processors;177
11.2.2.3;7.2.2.3 TSV Requirements;179
11.2.3;7.2.3 System-Level Integration;179
11.3;7.3 Stacking Functional Unit Blocks;179
11.3.1;7.3.1 Removing Wires;180
11.3.2;7.3.2 TSV Requirements;182
11.3.3;7.3.3 Design Space Issues;184
11.4;7.4 Splitting Functional Unit Blocks;184
11.4.1;7.4.1 Tradeoffs in 3D Cache Organizations;184
11.4.1.1;7.4.1.1 Three Dimension Splitting the Cache;186
11.4.1.2;7.4.1.2 Dealing with TSVs;189
11.4.2;7.4.2 Three Dimensional-Splitting Arithmetic Units;191
11.4.3;7.4.3 Three-Dimensional Adders;191
11.4.4;7.4.4 Interfacing Units;192
11.5;7.5 Conclusions;194
11.6;References;196
12;8 Three-Dimensional Network-on-Chip Architecture;198
12.1;8.1 Introduction;198
12.2;8.2 A Brief Introduction on Network-on-Chip;200
12.2.1;8.2.1 NoC Topology;201
12.2.2;8.2.2 NoC Router Design;202
12.2.3;8.2.3 More Information on NoC Design;203
12.3;8.3 Three-Dimensional NoC Architectures;203
12.3.1;8.3.1 Symmetric NoC Router Design;204
12.3.2;8.3.2 Three-Dimensional NoC--Bus Hybrid Router Design;206
12.3.3;8.3.3 True 3D Router Design;207
12.3.4;8.3.4 3D Dimensionally-Decomposed NoC Router Design;210
12.3.5;8.3.5 Multi-layer 3D NoC Router Design;210
12.3.6;8.3.6 3D NoC Topology Design;212
12.3.7;8.3.7 Impact of 3D Technology on NoC Designs;212
12.4;8.4 Chip Multiprocessor Design with 3D NoC Architecture;213
12.4.1;8.4.1 The 3D L2 Cache Stacking on CMP Architecture;214
12.4.2;8.4.2 The dTDMA Bus as a Communication Pillar;215
12.4.3;8.4.3 3D NoC--Bus Hybrid Router Architecture;217
12.4.4;8.4.4 Processors and L2 Cache Organization;218
12.4.5;8.4.5 Cache Management Policies;218
12.4.5.1;8.4.5.1 Search Policy;218
12.4.5.2;8.4.5.2 Placement and Replacement Policy;219
12.4.5.3;8.4.5.3 Cache Line Migration Policy;220
12.4.6;8.4.6 Methodology;220
12.4.7;8.4.7 Results;221
12.5;8.5 Conclusion;224
12.6;References;225
13;9 PicoServer: Using 3D Stacking Technology to Build Energy Efficient Servers;227
13.1;9.1 Introduction;227
13.2;9.2 Background;230
13.2.1;9.2.1 Server Platforms;231
13.2.1.1;9.2.1.1 Three-Tier Server Architecture;231
13.2.1.2;9.2.1.2 Server Workload Characteristics;232
13.2.1.3;9.2.1.3 Conventional Server Power Breakdown;233
13.2.2;9.2.2 Three-Dimensional Stacking Technology;234
13.2.3;9.2.3 DRAM Technology;235
13.3;9.3 Methodology;236
13.3.1;9.3.1 Simulation Studies;236
13.3.1.1;9.3.1.1 Full System Architectural Simulator;236
13.3.1.2;9.3.1.2 Server Benchmarks;237
13.3.2;9.3.2 Estimating Power and Area;239
13.3.2.1;9.3.2.1 Processors;239
13.3.2.2;9.3.2.2 Interconnect Considering 3D Stacking Technology;240
13.3.2.3;9.3.2.3 DRAM;241
13.3.2.4;9.3.2.4 Network Interface Controller -- NIC;242
13.4;9.4 PicoServer Architecture;242
13.4.1;9.4.1 Core Architecture and the Impact of Multithreading;243
13.4.2;9.4.2 Wide Shared Bus Architecture;245
13.4.3;9.4.3 On-chip DRAM Architecture;246
13.4.3.1;9.4.3.1 Role of On-chip DRAM;246
13.4.3.2;9.4.3.2 On-Chip DRAM Interface;248
13.4.3.3;9.4.3.3 Impact of On-Chip DRAM Refresh on Throughput;249
13.4.4;9.4.4 The Need for Multiple NICs on a CMP Architecture;249
13.4.5;9.4.5 Thermal Concerns in 3D Stacking;250
13.4.6;9.4.6 Impact of Integrating Flash onto PicoServer;252
13.5;9.5 Results;257
13.5.1;9.5.1 Overall Performance;258
13.5.2;9.5.2 Overall Power;261
13.5.3;9.5.3 Energy Efficiency Pareto Chart;262
13.6;9.6 Conclusions;263
13.7;References;265
14;10 System-Level 3D IC Cost Analysis and Design Exploration;269
14.1;10.1 Introduction;269
14.2;10.2 Early Design Estimation for 3D ICs;270
14.2.1;10.2.1 The Preliminary on Rent's Rule;271
14.2.2;10.2.2 Die Area and Metal Layer Estimator;272
14.2.3;10.2.3 The Impact of TSVs;273
14.3;10.3 Three-Dimensional Cost Model;274
14.4;10.4 System-Level 3D IC Design Exploration;277
14.4.1;10.4.1 Evaluation of the TSV's Impact on Die Area;278
14.4.2;10.4.2 The Potential of Metal Layer Reduction in 3D ICs;278
14.4.3;10.4.3 Bonding Techniques: D2W or W2W;279
14.4.4;10.4.4 Cost vs. Number of 3D Layers;280
14.4.5;10.4.5 Heterogenous Stacking;281
14.5;10.5 Cost-Driven 3D Design Flow;282
14.5.1;10.5.1 Case Study: Two-Layer OpenSPARC T1 3D Processor;285
14.6;10.6 Reciprocal Design Symmetry for Mask Reuse in 3D ICs;285
14.7;10.7 Conclusion;287
15;References;287
16;Index;289




