E-Book, Englisch, 888 Seiten
Yan / Eynard / Ion Global Design to Gain a Competitive Edge
2008
ISBN: 978-1-84800-239-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
An Holistic and Collaborative Design Approach based on Computational Tools
E-Book, Englisch, 888 Seiten
ISBN: 978-1-84800-239-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Recent rapid globalisation of manufacturing industries leads to a drive and thirst for rapid advancements in technological development and expertise in the fields of advanced design and manufacturing, especially at their interfaces. This development results in many economical benefits to and improvement of quality of life for many people all over the world. Technically speaking, this rapid development also create many opportunities and challenges for both industrialists and academics, as the design requirements and constraints have completely changed in this global design and manufacture environment. Consequently the way to design, manufacture and realise products have changed as well. The days of designing for a local market and using local suppliers in manufacturing have gone, if enterprises aim to maintain their competitiveness and global expansion leading to further success. In this global context and scenario, both industry and the academia have an urgent need to equip themselves with the latest knowledge, technology and methods developed for engineering design and manufacture. To address this shift in engineering design and manufacture, supported by the European Commission under the Asia Link Programme with a project title FASTAHEAD (A Framework Approach to Strengthening Asian Higher Education in Advanced Design and Manufacture), three key project partners, namely the University of Strathclyde of the United Kingdom, Northwestern Polytechncial University of China, and the Troyes University of Technology of France organised a third international conference.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Acknowledgements;9
3;Contents;13
4;Chapter 1 Front End of Engineering Design;21
4.1;Computer Aided Design: An Early Shape Synthesis System;22
4.1.1;1. Introduction;22
4.1.2;2. Background;23
4.1.3;3. A Computer Vision Based Approach to Sub- shape Detection;27
4.1.4;4. An Application of Sub-shape Detection to Design Sketches;28
4.1.5;5. Concluding Remarks;30
4.1.6;6. Acknowledgements;31
4.1.7;7. References;31
4.2;Constraints and Shortfalls in Engineering Design Practice;32
4.2.1;1. Engineering Design and the Product Development Core;32
4.2.2;2. Constraints and Shortfalls;33
4.2.3;3. The Concept of ‘A Diagnosis’;34
4.2.4;4. Tools for the Diagnosis;35
4.2.5;5. Testing the Concept, Tools and Procedures of the Diagnosis;38
4.2.6;6. Conclusions;38
4.2.7;7. References;39
4.3;Modular Product Family Development Within a SME;40
4.3.1;1. Introduction;40
4.3.2;2. Modular Product Families;41
4.3.3;3. GeMoCURE Methodology;42
4.3.4;4. SME Product Family Analysis;45
4.3.5;5. Product Customisation / Configuration;46
4.3.6;6. Interface Analysis;47
4.3.7;7. Future Work and Conclusions;48
4.3.8;8. References;48
4.4;Duality-based Transformation of Representation from Behaviour to Structure;50
4.4.1;1. Introduction;50
4.4.2;2. Methodology;51
4.4.3;3. Modelling the Transformation;52
4.4.4;7. Acknowledgement;59
4.4.5;8. References;59
4.5;Automatic Adaptive Triangulation of Surfaces in Parametric Space;60
4.5.1;1. Introduction;60
4.5.2;2. New Element Generation Approach;61
4.5.3;3. The Validity Checking of the New Triangle Element;64
4.5.4;4. Examples and Discussions;67
4.5.5;5. Conclusions;68
4.5.6;6. References;69
4.6;Research on Modeling Free-form Curved Surface Technology;70
4.6.1;1. Instruction;70
4.6.2;2. The Research Situation of Modeling Surface;71
4.6.3;Technology[;71
4.6.4;3. Development Tendency of Modeling Surface;72
4.6.5;4. Projections of Controlling Points and Normal Vectors of Curved Surface;74
4.6.6;5. Conclusions;79
4.6.7;6. References;79
4.7;Pattern System Design Method in Product Development;80
4.7.1;1. Introduction;80
4.7.2;2. Development of the Pattern Design;81
4.7.3;3. Pattern System Design;81
4.7.4;4. P-OI Pattern System Design Method;84
4.7.5;5. Application in the Product Development;87
4.7.6;6. Conclusions;89
4.7.7;7. References;89
4.8;Development of a Support System for Customer Requirement Capture;90
4.8.1;1. Introduction;90
4.8.2;2. Proposed Support System;93
4.8.3;3. Conclusion;97
4.8.4;4. References;97
4.9;Comparison About Design Methods of Tonpilz Type Transducer;100
4.9.1;1. Introduction;100
4.9.2;2. Equivalent Circuit Theory of Tonpilz Type Piezoelectric Ceramic Ultrasonic Transducer;101
4.9.3;3. Finite Element Analysis of Tonpilz Type Piezoelectric Ceramic Ultrasonic Transducer;103
4.9.4;4. Experiment and Comparison;105
4.9.5;5. Conclusion;108
4.9.6;6. Acknowledgement;108
4.9.7;7. References;108
4.10;Effect for Functional Design;110
4.10.1;1. Introduction;110
4.10.2;2. Function and Behavior;111
4.10.3;3. Effect and Effect Chain;113
4.10.4;4. Functional Design Based on Behavior and Effect;116
4.10.5;5. Case Study;117
4.10.6;6. Conclusion;119
4.10.7;7. Acknowledgments;119
4.10.8;8. References;119
4.11;Quality Control of Artistic Scenes in Processes of Design and Development of Digital- Game Products;122
4.11.1;1. Introduction;122
4.11.2;2. Research Methods;124
4.11.3;3. Results and Discussions;126
4.11.4;4. Conclusions;131
4.11.5;5. Acknowledgement;132
4.11.6;6. References;132
5;Chapter 2 Engineering Knowledge Management and Design for X;133
5.1;Integration of Design for Assembly into a PLM Environment;136
5.1.1;1. Introduction;136
5.1.2;2. Our Methodology of Integrated Product-Process Design;137
5.1.3;3. Experimentation;138
5.1.4;4. Conclusion and Perspectives;145
5.1.5;5. References;145
5.2;Design Knowledge for Decision-Making Process in a DFX Product Design Approach;146
5.2.1;2. Product Design Knowledge;147
5.2.2;3. Decision-Making in Product Design;149
5.2.3;4. Support for Knowledge Acquisition and Retrieval in a Design Decision- Making Process;150
5.2.4;5. Conclusion and Recommendations for Future Works;154
5.2.5;6. Acknowledgments;154
5.2.6;7. References;154
5.3;Mobile Knowledge Management for Product Life- Cycle Design;156
5.3.1;1. Introduction;156
5.3.2;2. Supporting Mobility in Engineering Design;157
5.3.3;3. A ‘LCC Knowledge’ Approach Framework;158
5.3.4;4. A Mobile Knowledge Management System Architecture;160
5.3.5;5. Design Scenario;161
5.3.6;6. Discussion;164
5.3.7;7. Conclusions and Future Work;164
5.3.8;8. References;165
5.4;Research on Application of Ontological Information Coding in Information Integration;166
5.4.1;1. Introduction;166
5.4.2;2. Analysis of Ontological Coding Object;167
5.4.3;3. Technology of Ontological Information Coding;168
5.4.4;4. Application of Ontological Information Coding Technology in Integration;171
5.4.5;5. Conclusions;173
5.4.6;6. References;174
5.5;RoHS Compliance Declaration Based on RCP and XML Database;176
5.5.1;1. Introduction;176
5.5.2;2. Background;178
5.5.3;4. Prototype Implementation;182
5.5.4;5. Conclusions and Future Work;182
5.5.5;6. References;183
5.6;Research on the Optimization Model of Aircraft Structure Design for Cost;186
5.6.1;1. Introduction;186
5.6.2;2. Design For Cost (DFC);187
5.6.3;3. Cost Model for Optimization of Aircraft Structure;188
5.6.4;4. Conclusions;195
5.6.5;5. References;195
5.7;Research on the Management of Knowledge in Product Development;196
5.7.1;1. Introduction;196
5.7.2;2. Steps of Integrating Knowledge Management into Product Development;197
5.7.3;3. Conclusions;205
5.7.4;References;205
5.8;Representing Design Intents for Design Thinking Process Modelling;206
5.8.1;1. Introduction;206
5.8.2;2. Related Work;207
5.8.3;3. Design Thinking Process Modelling;207
5.8.4;4. Illustrative Example;212
5.8.5;5. Conclusion;215
5.8.6;6. Acknowledgement;215
5.8.7;7. References;215
5.9;Application of Axiomatic Design Method to Manufacturing Issues Solving Process for Auto-body;218
5.9.1;1. Introduction;218
5.9.2;2. Elements of the System;219
5.9.3;3. Application of ADM to Reasoning Mechanism Using CBR;220
5.9.4;4. An Example;226
5.9.5;5. Conclusion and Future Work;227
5.9.6;6. Acknowledgement;227
5.9.7;7. References;227
5.10;Port-Based Ontology for Scheme Generation of Mechanical System;230
5.10.1;1. Introduction;230
5.10.2;2. The Interaction Model Between Two Components;231
5.10.3;3. Port Classification and Port Attribute;233
5.10.4;4. Port-based Modelling Design Process;235
5.10.5;6. Conclusion;239
5.10.6;Acknowledgements;239
5.10.7;References;239
5.11;Specification of an Information Capture System to Support Distributed Engineering Design Teams;240
5.11.1;1. Introduction;240
5.11.2;2. Distributed Team Collaboration;241
5.11.3;3. Capture, Storage and Retrieval of Product and Process Information;242
5.11.4;4. Information Capture and Storage System;244
5.11.5;5. Future Work;247
5.11.6;6. Concluding Remarks;248
5.11.7;7. Acknowledgements;249
5.11.8;8. References;249
5.12;Collaborative Product Design Process Integration Technology Based on Webservice;250
5.12.1;1. Introduction;250
5.12.2;2. Requirement of Collaborative Design Process Integration;251
5.12.3;3. Collaborative Design Process Model;252
5.12.4;4. Mechanism of Collaborative Design Process Integration;253
5.12.5;5. Integration Design Process based on Webservice;256
5.12.6;6. Summary and Future Work;259
5.12.7;7. References;259
5.13;Information Modelling Framework for Knowledge Emergence in Product Design;260
5.13.1;1 Introduction;260
5.13.2;2 Integration Contribution to the Trade Ontology Definition;261
5.13.3;3 Collaborative Work Contribution to a CAD/CAM Trade Ontology Definition;264
5.13.4;4 Contribution of Software Engineering to Semantic Typology of Relations Between Knowledge Objects;266
5.13.5;5 Application of the Semantic Typology of Relations on an Aircraft Example;267
5.13.6;6 Conclusion;268
5.13.7;7 References;269
5.14;Flexible Workflow Autonomic Object Intelligence Algorithm Based on Extensible Mamdani Fuzzy Reasoning System;270
5.14.1;1. Introduction;270
5.14.2;2. Literature Review of Flexible Workflow Intelligence;271
5.14.3;3. The Principle of the Intelligence of Flexible Workflow based on Multi- AO;272
5.14.4;4. AO Intelligence Algorithm based on Extensive Mamdani Fuzzy Reasoning System;274
5.14.5;5. The Instance of Flexible Workflow AO Intelligence;277
5.14.6;6. Conclusion;279
5.14.7;7. Reference;279
5.15;DSM based Multi-view Process Modelling Method for Concurrent Product Development;280
5.15.1;1. Introduction;280
5.15.2;2. Review;281
5.15.3;3. The Principle of DSM based Multi-view Process Modelling;283
5.15.4;4. Implementation;288
5.15.5;5. Summary;288
5.15.6;6. Acknowledgement;289
5.15.7;7. References;290
5.16;Using Blogs to Manage Quality Control Knowledge in the Context of Machining Processes;292
5.16.1;1. Introduction;292
5.16.2;2. Architecture of Blogs-based Management of Quality Control Knowledge ( BMQCK);293
5.16.3;3. Key Enabling Technologies of BMQCK;295
5.16.4;4. Case Study;298
5.16.5;5. Conclusions;299
5.16.6;6. Acknowledgements;300
5.16.7;7. References;300
5.17;Analysis on Engineering Change Management Based on Information Systems;302
5.17.1;1. Introduction;302
5.17.2;2. EC Model Based on Information Systems;304
5.17.3;3. Solving Strategies;308
5.17.4;4. Conclusions and Future Works;309
5.17.5;5. Acknowledgements;309
5.17.6;6. References;310
5.18;Research and Realization of Standard Part Library for 3D Parametric and Autonomic Modeling;312
5.18.1;1. Introduction;312
5.18.2;2. Standard Part Library for 3D Parametric Autonomic Modeling;314
5.18.3;3. The Model Feature Parameters Extracting Algorithm;317
5.18.4;4. The Design of Driven Parameter Table in Database;318
5.18.5;5. The Driven Algorithm;319
5.18.6;6. Conclusion;320
5.18.7;7. References;320
5.19;Products to Learn or Products to Be Used?;322
5.19.1;1. Introduction;322
5.19.2;2. State of the Art;323
5.19.3;3. Products to Learn;325
5.19.4;4. Various Situations in the Generation of Knowledge;326
5.19.5;5. The Analysis Grid;328
5.19.6;6. How to Use This Grid?;329
5.19.7;7. Conclusion;330
5.19.8;8. References;330
5.20;Archival Initiatives in the Engineering Context;332
5.20.1;1. Introduction;332
5.20.2;2. The Engineering Archival Projects;333
5.20.3;3. The Open Archival Information System (OAIS);333
5.20.4;4. The OAIS Based Engineering Archive Projects;334
5.20.5;5. An Approach of Archive Management in a PLM Context;335
5.20.6;7. Discussion;339
5.20.7;8. References;339
5.21;Design Information Revealed by CAE Simulation for Casting Product Development;342
5.21.1;1. Introduction;342
5.21.2;2. Modeling of Casting Process;344
5.21.3;3. Information Revealed for Solution Generation and Verification;346
5.21.4;4. Case Study;347
5.21.5;5. Conclusions;349
5.21.6;6. Acknowledgments;350
5.21.7;7. References;350
5.22;An Ontology-based Knowledge Management System for Industry Clusters;352
5.22.1;1. Introduction;352
5.22.2;2. Literature Review;353
5.22.3;3. Methodology;355
5.22.4;4. Case Study;358
5.22.5;5. Conclusion;359
5.22.6;6. References;360
6;Chapter 3 Detail Design and Design Analysis;362
6.1;Loaded Tooth Contact Analysis of Modified Helical Face Gears;364
6.1.1;1. Introduction;364
6.1.2;2. Surface modification;365
6.1.3;3. Loaded tooth contact analysis (LTCA);367
6.1.4;4. Analysis for meshing quality;369
6.1.5;5. Computation velocity comparing with FEM;372
6.1.6;6. Conclusions;373
6.1.7;7. Acknowledgements;373
6.1.8;8. References;373
6.2;Simplified Stress Analysis of Large-scale Harbor Machine’s Wheel;374
6.2.1;1 Introduction;374
6.2.2;2 Load Distribution Analysis;375
6.2.3;3 Stress Analysis of P2515 Model Wheel;381
6.2.4;4 Conclusions;382
6.2.5;5 Acknowledgements;383
6.2.6;6 References;383
6.3;Clean-up Tool-path Generation for Multi- patch Solid Model by Searching Approach;384
6.3.1;1. Introduction;384
6.3.2;2. Overall Conceptual Approach;385
6.3.3;3. Tool Path Generation for Pencil-cut;387
6.4;Fatigue Life Study of Bogie Framework Welding Seam by Finite Element Analysis Method;394
6.4.1;1. Introduction;394
6.4.2;2. Welding Seam Fatigue Life Theory;394
6.4.3;3. FEA of Welding Seam;396
6.4.4;4. FEA of Fatigue Life;398
6.4.5;5. Conclusions;401
6.4.6;6. References;402
6.5;Research on Kinematics Based on Dual Quaternion for Five- axis Milling Machine;404
6.5.1;1. Introduction;404
6.5.2;2. Dual Quaternion Review;405
6.5.3;3. The Machine Constraints;406
6.5.4;4. Dual Quaternion Machine Kinematics;408
6.5.5;5. Examples;410
6.5.6;6. Conclusion;411
6.5.7;7. References;411
6.6;Consideration for Galvanic Coupling of Various Stainless Steels & Titanium, During Application in Water- LiBr Absorption- Type Refrigeration System;414
6.6.1;1. Introduction;414
6.6.2;2. Experimental Methodology;415
6.6.3;3. Results and Discussion;416
6.6.4;4. Severity of Couples;420
6.6.5;5. Conclusions;421
6.6.6;6. References;422
6.7;Real Root Isolation Arithmetic to Parallel Mechanism Synthesis;424
6.7.1;1. Introduction;424
6.7.2;2. Real Root Isolation Arithmetic and Maple Realization;425
6.7.3;4. Discussion and Conclusion;432
6.7.4;5. Acknowledgement;433
6.7.5;6. References;433
6.8;Experimental Measurements for Moisture Permeations and Thermal Resistances of Cyclo Olefin Copolymer Substrates;434
6.8.1;1. Introduction;434
6.8.2;2. Experimental Apparatus;436
6.8.3;3. Results and Discussion;439
6.8.4;4. Conclusions;442
6.8.5;5. References;442
6.9;Novel Generalized Compatibility Plate Elements Based on Quadrilateral Area Coordinates;444
6.9.1;1. Introduction;444
6.9.2;2. Derivation of AQP Elements;445
6.9.3;3. List of AQP Series Elements;449
6.9.4;4. Numerical Examples;450
6.9.5;5. Conclusion;453
6.9.6;6. References;454
6.10;Individual Foot Shape Modeling from 2D Dimensions Based on Template and FFD;456
6.10.1;1. Introduction;456
6.10.2;2. Methodology;457
6.10.3;3. Accuracy of Model;463
6.10.4;4. Conclusions;463
6.10.5;5. Acknowledgements;464
6.10.6;6. References;464
6.11;Application of the TRIZ to Circular Saw Blade;466
6.11.1;1. Introduction;466
6.11.2;2. TRIZ Theory and Common TRIZ Tools;467
6.11.3;3. Application of the TRIZ for Circular Saw Blade;469
6.11.4;4. References;475
7;Chapter 4 Simulation and Optimisation in Design;476
7.1;Research on Collaborative Simulation Platform for Mechanical Product Design;478
7.1.1;1. Introduction;478
7.1.2;2. The Framework of Collaborative Simulation Platform;479
7.1.3;3. The Key Technologies of Collaborative Simulation Platform Supporting of Mechanical Product Design;481
7.1.4;4. Illustrative Application;484
7.1.5;5. Conclusions;485
7.1.6;6. Acknowledgements;486
7.1.7;7. References;486
7.2;Development of a Visualized Modeling and Simulation Environment for Multi- domain Physical Systems;488
7.2.1;1. Introduction;488
7.2.2;2. Modelica Modeling Language;489
7.2.3;3. Existing Simulation Environments Based on Modelica Language;491
7.2.4;4. Vimola Simulation Environment;492
7.2.5;5. PIMM Application Example in Vimola;494
7.2.6;6. Conclusion;496
7.2.7;7. Acknowledgements;497
7.2.8;8. References;497
7.3;Selection of a Simulation Approach for Saturation Diving Decompression Chamber Control and Monitoring System;498
7.3.1;1. Introduction;498
7.3.2;2. Simulation Options;500
7.3.3;3. Simulation Approach Selection;505
7.3.4;4. Acknowledgement;507
7.3.5;5. References;507
7.4;Optimal Design of Delaminated Composite Plates for Maximum Buckling Load;508
7.4.1;1. Introduction;508
7.4.2;2. Finite Element Method;510
7.4.3;3. Long Fiber Composite;510
7.4.4;4. Optimal Design;511
7.4.5;5. Analysis Parameters;512
7.4.6;6. Results;512
7.4.7;7. Conclusions;516
7.4.8;8. References;516
7.5;Modeling Tetrapods Robot and Advancement;518
7.5.1;1. Introduction;518
7.5.2;3.;522
7.5.3;The;522
7.5.4;Gait Simulation;522
7.5.5;7. References;526
7.6;The Analysis of Compression About the Anomalistic Paper Honeycomb Core;528
7.6.1;1. Introduction;528
7.6.2;2. Forming and Compressing Course of Honeycomb Paperboard;529
7.6.3;3. FEA of Honeycomb Paperboard;531
7.6.4;5. Conclusions;536
7.6.5;6. References;537
7.7;C-NSGA-II-MOPSO: An Effective Multi-objective Optimizer for Engineering Design Problems;538
7.7.1;1. Introduction;538
7.7.2;2. NSGA-II-MOPSO;539
7.7.3;3. Constrained NSGA-II-MOPSO;540
7.7.4;4. Numerical Examples;544
7.7.5;5. Conclusions;546
7.7.6;6. References;546
7.8;Material Selection and Sheet Metal Forming Simulation of Aluminium Alloy Engine Hood Panel;548
7.8.1;1. Introduction;548
7.8.2;2. Analysis on Formability of Hood Inner Panel;549
7.8.3;3. Aluminium Alloy Stamping Simulation and Optimization;553
7.8.4;4. Conclusion;557
7.8.5;5. References;557
7.9;Studies on Fast Pareto Genetic Algorithm Based on Fast Fitness Identification and External Population Updating Scheme;558
7.9.1;1. Introduction;558
7.9.2;2. Concept of Pareto Optimality;559
7.9.3;3. Pareto Genetic Algorithms;560
7.9.4;4. Simulation Optimization Experiment;563
7.9.5;5. Conclusions;567
7.9.6;6. Acknowledgements;567
7.9.7;7. References;567
7.10;Vibration Control Simulation of Offshore Platforms Based on Matlab and ANSYS Program;568
7.10.1;1. Introduction;568
7.10.2;2. Constitution of METMD System;569
7.10.3;4. Conclusions;577
7.10.4;5. References;577
7.11;Study on Dynamics Analysis of Powertrains and Optimization of Coupling Stiffness;580
7.11.1;1. Introduction;580
7.11.2;2. Finite Element Modeling for the Powertrain;581
7.11.3;3. Natural Frequency Analysis;583
7.11.4;6. Conclusion;588
7.11.5;7. References;588
7.12;Parametric Optimization of Rubber Spring of Construction Vehicle Suspension;590
7.12.1;1. Introduction;590
7.12.2;2. Finite Element Modeling of Rubber Spring;592
7.12.3;3. Verification of the FE Results;594
7.12.4;5. Parametric Optimization of the Rubber Spring;596
7.12.5;x;597
7.12.6;6. Conclusions;598
7.12.7;7. Acknowedgements;599
7.12.8;8. References;599
7.13;The Development of a Computer Simulation System for Mechanical Expanding Process of Cylinders;600
7.13.1;1. Introduction;600
7.13.2;2. System Structure;602
7.13.3;3. Example and Analysis;606
7.13.4;4. Conclusion;609
7.13.5;5. Acknowledgement;609
7.13.6;6. References;609
7.14;Rectangle Packing Problems Solved by Using Feasible Region Method;610
7.14.1;1. Introduction;610
7.14.2;2. Feasible Region of Packing Objects;611
7.14.3;3. Packing Problems Solved Using Feasible Region Method;611
7.14.4;4. Algorithm for Rectangle Packing Problems Solved by Feasible Region Method;615
7.14.5;5. Application Examples;616
7.14.6;6. Conclusions;619
7.14.7;7. References;619
7.15;Aircraft’s CAD Modeling in Multidisciplinary Design Optimization Framework;620
7.15.1;1. MDO Method of Aircraft;620
7.15.2;2. Multidisciplinary Framework of Product Design;622
7.15.3;3. CAD Modeling of MDO Views;623
7.15.4;4. Consistency of MDO Modeling;625
7.15.5;5. Conclusions;626
7.15.6;6. References;626
7.16;Optimization of Box Type Girder of Overhead Crane;628
7.16.1;1. Introduction;628
7.16.2;2. Modeling, Material Properties and Meshing;629
7.16.3;3. Results and Discussion;630
7.16.4;4. Conclusions;636
7.16.5;5. References;636
8;Chapter 5 New Mechanism and Device Design and Analysis;638
8.1;Symmetric Toggle-lever-toggle 3-stage Force Amplifying Mechanism and Its Applications;640
8.1.1;1. Introduction;640
8.1.2;2. Principles;641
8.1.3;3. Mechanics Calculation;642
8.1.4;4. Moving Relationship;644
8.1.5;5. Source Force and Equipment Layout;647
8.1.6;6. A Calculation Example and the Application in Advanced Manufacturing;648
8.1.7;7. Conclusion;649
8.1.8;8. References;649
8.2;Kinematics and Statics Analysis for Power Flow Planet Gear Trains;650
8.2.1;1. Introduction;650
8.2.2;2. Fundamental Structure of the System and Its Dividing;651
8.2.3;3. The Kinematics and Static Load Parameters Calculating;652
8.2.4;4. Example Analysis;656
8.2.5;5. Conclusions;657
8.2.6;6. Acknowledgements;658
8.2.7;7. References;658
8.3;Green Clamping Devices Based on Pneumaticmechanical Compound Transmission Systems Instead of Hydraulic Transmission Systems;660
8.3.1;1. Introduction;660
8.3.2;2. The Toggle Force-amplifying Mechanism;661
8.3.3;3. Two-step Orthogonal Toggle Force-amplifying Mechanisms and Rod- less Pneumatic Cylinder;662
8.3.4;4. Example;668
8.3.5;5. Conclusion;668
8.3.6;6. References;668
8.4;Rapid Registration for 3D Data with Overlapping Range Based on Human Computer Interaction;670
8.4.1;1. Introduction;670
8.4.2;2. Selection of Pairs of Points;671
8.4.3;3. Rough Registration;673
8.4.4;5. Experiments and Conclusions;676
8.4.5;7. References;678
8.5;A New FE Modelling Approach to Spot Welding Joints of Automotive Panels and Modal Characteristics;680
8.5.1;1 Introduction;680
8.5.2;2 Spot Weld Modelling;681
8.5.3;3. Effect of the Structural Parameter of Spot Welding on the Modal Characteristics;686
8.5.4;4. Conclusion;688
8.5.5;5. Acknowledgments;689
8.5.6;6. References;689
8.6;Precision Measurement and Reverse Motion Design of the Follower for Spatial Cams;690
8.6.1;1. Introduction;690
8.6.2;2. Precision Measurement of Cylindrical Cams;691
8.6.3;3. Reconstruct Cam Contour Curve;694
8.6.4;4. Reverse Design of Motion Specification;695
8.6.5;5. Example of Measurement and Reverse Design;695
8.6.6;6. Conclusions;698
8.6.7;7. References;698
8.7;Static Analysis of Translational 3-UPU Parallel Mechanism Based on Principle of Virtual Work;700
8.7.1;1. Introduction;700
8.7.2;2. Kinematics of Limbs;702
8.7.3;3. Virtual Displacements in PM;705
8.7.4;4. The Actuating Forces in Limbs;706
8.7.5;5. Simulation of Example;706
8.7.6;6. Summary;709
8.7.7;7. References;709
8.8;A Natural Frequency Variable Magnetic Dynamic Absorber;710
8.8.1;1 Introduction;710
8.8.2;2 The Principle of the Magnetic Dynamic Absorber;711
8.8.3;3 The Dynamic Characteristics Analysis of the Absorber;713
8.8.4;4. Conclusion;715
8.8.5;5. References;716
9;Chapter 6 Manufacturing Systems Design;718
9.1;Next Generation Manufacturing Systems;720
9.1.1;1. Introduction;720
9.1.2;2. Full Life Cycle Engineering Requirements Defined;721
9.1.3;3. Underlying Modelling Concepts;725
9.1.4;4. Ongoing Industrial Application and Case Testing of the ip4 Toolbox;727
9.1.5;5. Key Innovations and Reflections;728
9.1.6;6. References;729
9.2;Tooling Design and Fatigue Life Evaluation via CAE Simulation for Metal Forming;730
9.2.1;1. Introduction;730
9.2.2;2. Literature Review;731
9.2.3;3. Classic Fatigue Theories;731
9.2.4;4. Tool Design and Fatigue Life Analysis Framework;732
9.2.5;5 Case Study;735
9.2.6;6. Summary;738
9.2.7;7. References;738
9.3;Modelling of Processing Velocity in Computercontrolled Sub- aperture Pad Manufacturing;740
9.3.1;2. Principle of Computer-controlled Sub-aperture Fabrication;741
9.3.2;3. Experiments;744
9.3.3;4. Conclusions;746
9.3.4;5. Acknowledgements;746
9.3.5;6. References;746
9.4;Load Balancing Task Allocation of Collaborative Workshops Based on Immune Algorithm;748
9.4.1;1. Introduction;748
9.4.2;2. Load Balancing Task Allocation Problem Between Collaborative Workshops;749
9.4.3;3. Task Allocation Algorithm Based on IA;752
9.4.4;4. Simulation Results;757
9.4.5;7. References;761
9.5;Study on Reconfigurable CNC System;762
9.5.1;1. Introduction;762
9.5.2;2. The RCNC System;763
9.5.3;3. System Architecture;764
9.5.4;4. Structure of the Software;766
9.5.5;5. Realization of the RCNC System;768
9.5.6;6. Conclusions;769
9.6;Development of a NC Tape Winding Machine;772
9.6.1;1. Introduction;772
9.6.2;2. Analysis of the Processing Parameters;773
9.6.3;3. Components of the NC Tape Winding Machine;774
9.6.4;4. The Key Technologies and Creation Methods;774
9.6.5;5. Conclusions;781
9.6.6;6. References;781
9.7;TRIZ-based Evolution Study for Modular Fixture;782
9.7.1;1. Introduction;782
9.7.2;2. Direct Evolution (DE) Theory and Evolutionary Potential;783
9.7.3;3. Reviews of Fixture [1, 2, 10];784
9.7.4;4. Patents Analysis of MFs;786
9.7.5;5. Evolutionary Patterns and Lines of MF;787
9.7.6;6. Conclusions;790
9.7.7;7. Acknowledgement;790
9.7.8;8. References;791
9.8;Study on the Application of ABC System in the Refinery Industry;792
9.8.1;1. Introduction;792
9.8.2;2. Status Quo of Refineries Costing;793
9.8.3;3. Activity-Based Costing Strategy in Refinery;794
9.8.4;4. Analysis on Impacts;798
9.8.5;5. Summary;800
9.8.6;6. References;800
9.9;The Application of Activity-Based Cost Restore in the Refinery Industry;802
9.9.1;1. Introduction;802
9.9.2;2. Difficulties of Cost Restore in the Refinery Industry;802
9.9.3;3. Theory of Product Cost Restore Based on Activities;804
9.9.4;4. Direct Cost Restore Based on Activities;805
9.9.5;5. Conclusions;811
9.9.6;6. References;811
9.10;Research on the Cost Distribution Proportionality of Refinery Units;812
9.10.1;1. Introduction;812
9.10.2;2. Theory Model;813
9.10.3;3. An Instance;818
9.10.4;4. Summary;820
9.10.5;5. References;821
10;Chapter 7 Collaborative and Creative Product Development and Manufacture;822
10.1;From a 3D Point Cloud to a Real CAD Model of Mechanical Parts, a Product Knowledge Based Approach;824
10.1.1;1. Introduction;824
10.1.2;2. The State of the Art;826
10.1.3;3. Research Paths;827
10.1.4;4. Conclusions;831
10.1.5;5. References;832
10.2;Research on Collaborative Design Support System for Ship Product Modelling;834
10.2.1;1. Introduction;834
10.2.2;2. Construction of Design System;835
10.2.3;3. The Design of Product Modelling;836
10.2.4;4. The Design of Network Structure Framework;839
10.2.5;5. The Management of Multi-User Visiting;842
10.2.6;6. Conclusion;843
10.2.7;7. References;843
10.3;Research on New Product Development Planning and Strategy Based on TRIZ Evolution Theory;844
10.3.1;1. Introduction;844
10.3.2;2 The Objects Decision-Making Procedure for New Product Development Based on TRIZ Theory of Evolution;845
10.3.3;3. Technology Planning and Innovation Strategy Analysis for New Product Development;849
10.3.4;4. Case Study: The Hydrodynamic Reciprocating Sealing Set;849
10.3.5;5. Conclusions;852
10.3.6;6. References;852
10.4;ASP-based Collaborative Networked Manufacturing Service Platform for SMEs;854
10.4.1;1. Introduction;854
10.4.2;2. Structure of ASP-based CNMSP;855
10.4.3;3. Collaborative Workflow;856
10.4.4;4. Role-based Resource Dynamic Collection;857
10.4.5;5. Implementation and Case Study;859
10.4.6;6. Conclusions and Future Research;860
10.4.7;7. References;861
10.5;Virtual Part Design and Modelling for Product Design;862
10.5.1;1. Introduction;862
10.5.2;2. Parts Structure Model;863
10.5.3;3. Modelling of Virtual Design Library;867
10.5.4;4. Conclusions;871
10.5.5;5. Acknowledgement;871
10.5.6;6. References;872
10.6;Integrated Paper-based Sketching and Collaborative Parametric 3D Modelling;874
10.6.1;Abstract;874
10.6.2;1. Introduction;874
10.6.3;2. Related Work on Computer-aided Sketching;875
10.6.4;3. Framework Architecture;876
10.6.5;4. Sketching Approach;877
10.6.6;5. Processing of the Sketches;879
10.6.7;5. Evaluation;880
10.6.8;6. Discussion and Future Work;881
10.6.9;7. Conclusions;881
10.6.10;8. Acknowledgements;882
10.6.11;9. References;882
10.7;Mechanical System Collaborative Simulation Environment for Product Design;884
10.7.1;1. Introduction;884
10.7.2;2. CSE Function Framework and Architecture;885
10.7.3;3. Multi-hierarchy Engineering Data Management;887
10.7.4;4. Simulation Flow and Flow Control;889
10.7.5;5. Experiment and Discussion;890
10.7.6;6. Conclusions;891
10.7.7;7. Acknowledgements;892
10.7.8;8. References;892
10.8;Evolution of Cooperation in an Incentive Based Business Game Environment;894
10.8.1;1. Introduction;894
10.8.2;2. Background;895
10.8.3;3. Related Works;896
10.8.4;4. Problem Definition and Incentive Based Model;897
10.8.5;5. Experimental Setup and Results;898
10.8.6;6. Discussion and Conclusion;900
10.8.7;7. References;901
11;Author Index;902




