Zhang / Xie / Li | Alternative Data and Artificial Intelligence Techniques | Buch | 978-3-031-11614-8 | www.sack.de

Buch, Englisch, 330 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 456 g

Reihe: Palgrave Studies in Risk and Insurance

Zhang / Xie / Li

Alternative Data and Artificial Intelligence Techniques

Applications in Investment and Risk Management
1. Auflage 2022
ISBN: 978-3-031-11614-8
Verlag: Springer International Publishing

Applications in Investment and Risk Management

Buch, Englisch, 330 Seiten, Format (B × H): 148 mm x 210 mm, Gewicht: 456 g

Reihe: Palgrave Studies in Risk and Insurance

ISBN: 978-3-031-11614-8
Verlag: Springer International Publishing


This book introduces a state-of-art approach in evaluating portfolio management and risk based on artificial intelligence and alternative data. The book covers a textual analysis of news and social media, information extraction from GPS and IoTs data, and risk predictions based on small transaction data, etc. The book summarizes and introduces the advancement in each area and highlights the machine learning and deep learning techniques utilized to achieve the goals. As a complement, it also illustrates examples on how to leverage the python package to visualize and analyze the alternative datasets, and will be of interest to academics, researchers, and students of risk evaluation, risk management, data, AI, and financial innovation.

Zhang / Xie / Li Alternative Data and Artificial Intelligence Techniques jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Chapter 1: The introduction of the portfolio management and risk evaluation .- Chapter 2: The major trends in financial portfolio management.- Chapter 3: Machine Learning and AI in financial portfolio management.- Chapter 4: Introduction of Alternative data in Finance.- Chapter 5: Alternative Data utilization from country perspective.- Chapter 6: Smart Beta and Risk Factors based on Textural Data and Machine Learning.- Chapter 7: Smart Beta and Risk Factors based on IoTs and AIoTs Data.- Chapter 8: Environmental, Social Responsibility and Corporate Governance on Corporations.- Chapter 9: Case Study – Fraud and Deception Detection: Text-based Data Analytics .- Chapter 10: Case Study – Investment Risk Analysis based on Sentiment Analysis and implementation .- Chapter 11: Case Study – Analyzing the corporation performance with ESG Factors.- Chapter 12: Alternative Data Visualization in Python.



Qingquan Tony Zhang is an Adjunct Professor at the University of Illinois at Champaign, R.C. Evan Fellow, Gies Business School, focusing on finance, quantitative investment and entrepreneurship. He is President of the Chicago chapter of the Chinese American Association for Trading and Investment, who has long worked in FinTech, including artificial intelligence and big data. 

Beibei Li is an Associate Professor of IT & Management and Anna Loomis McCandless Chair at Carnegie Mellon University. Dr. Li has extensive experience at leveraging large-scale observational data analytics and experimental analysis with a strong focus on modeling individual user behavior across online, offline, and mobile channels for decision support. 

Danxia Xie is an Associate Professor in Economics at Tsinghua University, China. Dr. Xie’s teaching and research focuses on digital economy, finance, law and economics, and macroeconomics. Dr. Xie has also worked at Peterson Institute for International Economics, a top think tank at Washington, DC.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.