E-Book, Englisch, 400 Seiten
Zuidam / Nedovic Encapsulation Technologies for Active Food Ingredients and Food Processing
1. Auflage 2009
ISBN: 978-1-4419-1008-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 400 Seiten
ISBN: 978-1-4419-1008-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Consumers prefer food products that are tasty, healthy, and convenient. Encapsulation is an important way to meet these demands by delivering food ingredients at the right time and right place. For example, encapsulates may allow flavor retention, mask bad tasting or bad smelling components, stabilize food ingredients, and increase their bioavailability. Encapsulation may also be used to immobilize cells or enzymes in the production of food materials or products, such as fermentation or metabolite production. This book provides a detailed overview of the encapsulation technologies available for use in food products, food processing, and food production. The book aims to inform those who work in academia or R&D about both the delivery of food compounds via encapsulation and food processing using immobilized cells or enzymes. The structure of the book is according to the use of encapsulates for a specific application. Emphasis is placed on strategy, since encapsulation technologies may change. Most chapters include application possibilities of the encapsulation technologies in specific food products or processes. The first part of the book reviews general technologies, food-grade materials, and characterization methods for encapsulates.The second part discusses encapsulates of active ingredients (e.g., aroma, fish oil, minerals, vitamins, peptides, proteins, probiotics) for specific food applications.The last part describes immobilization technologies of cells and enzymes for use within food fermentation processes (e.g., beer, wine, dairy, meat), and food production (e.g., sugar conversion, production of organic acids or amino acids, hydrolysis of triglycerides).Edited by two leading experts in the field, Encapsulation Technologies for Food Active Ingredients and Food Processing will be a valuable reference source for those working in the academia or food industry. The editors work in both industry or academia, and they have brought together in this book contributions from both fields.
Dr. Nicolaas Jan (Klaas-Jan) Zuidam is leading the skillbase group 'Controlled Delivery of Food Actives' and is a member of the management team of the Flavour Generation & Delivery department within Unilever Research and Development in Vlaardingen, The Netherlands. Since 1990, he has been working on encapsulation, respectively, in the area of pharmaceutics, gene therapy, laundry and foods. He is an author of more than 35 peer-reviewed articles and book chapters, and holds 2 patents.Dr. Viktor A. Nedovic is an associate professor at the Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Belgrade, Republic of Serbia. Since 1989, he has been working on immobilisation, co-immobilisation, encapsulation and bioreactor system design in the fields of food production and fermentation processes. He is an author of more than 70 peer-reviewed articles and book chapters. He has served as co-editor of two important books on cell immobilisation: Fundamentals of Cell Immobilisation Biotechnology (Kluwer Academic Publishers, 2004) and Applications of Cell Immobilisation Biotechnology (Springer, 2005).
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;4
2;Contributors;6
3;Introduction;10
4;Overview of Microencapsulates for Use in Food Products or Processes and Methods to Make Them;12
4.1;2.1 Definitions and Benefits of Microencapsulates in Food Products;12
4.2;2.2 Encapsulation Processes;14
4.2.1;2.2.1 Spray-Drying and Agglomeration;16
4.2.2;2.2.2 Fluid Bed Coating;18
4.2.3;2.2.3 Spray-Cooling or Spray-Chilling;19
4.2.4;2.2.4 Melt Injection and Melt Extrusion;20
4.2.5;2.2.5 Emulsification;22
4.2.6;2.2.6 Preparation of Emulsions with Protein and/or Biopolymer Multilayers;23
4.2.7;2.2.7 Coacervation;24
4.2.8;2.2.8 Preparation of Microspheres by Extrusion or Emulsification;25
4.2.9;2.2.9 Co-extrusion;27
4.2.10;2.2.10 Inclusion Complexation;28
4.2.11;2.2.11 Liposome Entrapment;29
4.2.12;2.2.12 Encapsulation by Using Supercritical Fluid Technology;30
4.2.13;2.2.13 Freeze-Drying and Vacuum Drying;31
4.3;2.3 Nanoparticles;31
4.4;2.4 Criteria to Select a Proper Encapsulation Technology;34
4.5;References;35
4.6;Abbreviations;39
5;Materials for Encapsulation;39
5.1;3.1 Introduction;40
5.2;3.2 Materials ;42
5.3;3.3 Analytical and Characterization Methods;80
5.3.1;3.3.1 Isolation and Purification;82
5.3.2;3.3.2 Composition Analysis;82
5.3.3;3.3.3 Macromolecular Characterization;83
5.3.4;3.3.4 Rheological Characterization;84
5.4;3.4 Regulatory Aspects;86
5.5;3.5 Strategies for the Selection of Materials;87
5.5.1;3.5.1 Use of Established Materials;90
5.5.2;3.5.2 Identification and Definition of Criteria for Selection of a Material;95
5.5.3;3.5.3 Strategies;97
5.6;3.6 Concluding Remarks;98
5.7;References;99
6;Characterization Methods of Encapsulates;109
6.1;4.1 Introduction;109
6.2;4.2 Physical Characterization Techniques ;110
6.3;4.3 Mass Transfer;121
6.3.1;4.3.1 Mass Transfer Mechanisms;121
6.3.2;4.3.2 Mass Transfer Properties;122
6.3.3;4.3.3 Characterizing Mass Transfer Properties;126
6.3.4;4.3.4 Modeling Release Kinetics;127
6.4;4.4 Conclusions;129
6.5;References;130
7;Encapsulation of Aroma;134
7.1;5.1 Introduction;134
7.2;5.2 Mechanisms of Aroma Release Out of Encapsulates;136
7.3;5.3 Encapsulation Technologies for Aroma;138
7.3.1;5.3.1 Spray-Drying;138
7.3.2;5.3.2 Agglomeration or Granulation;142
7.3.3;5.3.3 Fluid bed Coating;142
7.3.4;5.3.4 Spray-Chilling/Spray-Cooling;143
7.3.5;5.3.5 Melt Injection;144
7.3.6;5.3.6 Melt Extrusion;146
7.3.7;5.3.7 Coacervates;147
7.3.8;5.3.8 Microspheres;148
7.3.9;5.3.9 Co-extrusion;150
7.3.10;5.3.10 Yeast Cells;151
7.3.11;5.3.11 Cyclodextrins;153
7.3.12;5.3.12 Silica Particles;154
7.3.13;5.3.13 Co-crystallization/Co-precipitation;155
7.4;5.4 Applications of Aroma Encapsulates;156
7.4.1;5.4.1 Aroma Retention During Production and Storage in Food Products;156
7.4.2;5.4.2 Aroma Retention During Cooking;159
7.4.3;5.4.3 Aroma Release During Eating;161
7.5;5.5 Future Developments;162
7.6;References;163
8;Microencapsulation of Fish Oil;168
8.1;6.1 Introduction;168
8.2;6.2 Lipid Oxidation;171
8.2.1;6.2.1 Initiation Reaction;171
8.2.2;6.2.2 Propagation;172
8.2.3;6.2.3 Termination;173
8.2.4;6.2.4 Formation of Off-Flavor;173
8.2.5;6.2.5 Prevention of Lipid Oxidation;173
8.3;6.3 Microencapsulation Technologies of Fish Oil;174
8.4;6.4 Analytical Characterization of Fish Oil Microencapsulates ;185
8.5;6.5 Selection of Fish Oil Microencapsulates;187
8.6;6.6 Future Developments;189
8.7;References;189
9;Encapsulation of Iron and Other Micronutrients for Food Fortification;193
9.1;7.1 Micronutrient Deficiencies;193
9.2;7.2 Encapsulation of Iron;193
9.3;7.3 Bioavailability;198
9.4;7.4 Food Fortification with Encapsulated Iron;200
9.4.1;7.4.1 Sensory Testing in Cereals;200
9.4.2;7.4.2 Ferrous Sulfate and Ascorbic Acid Encapsulated in Soy Lecithin Liposomes;201
9.4.3;7.4.3 Emulsifications of Ferric Pyrophosphate;202
9.4.4;7.4.4 Encapsulated Ferrous Fumarate Plus Ascorbic Acid As “ Sprinkles” in Ghana;202
9.4.5;7.4.5 Dual Fortified Salt with Encapsulated Ferrous Sulfate and Iodine;203
9.4.6;7.4.6 Fortification of Salt with Encapsulated Fe: Stability and Acceptability Testing;204
9.4.7;7.4.7 Fortification of Salt with Encapsulated Ferrous Fumarate;206
9.4.8;7.4.8 Triple Fortification of Salt with Iron, Iodine and Vitamin A;207
9.4.9;7.4.9 Dual Fortification of Wheat Flour with Encapsulated Ferrous Sulfate and Iodine;211
9.5;7.5 Final Considerations;212
9.6;References;213
10;Encapsulation of Carotenoids;216
10.1;8.1 Introduction;216
10.2;8.2 Processes to Encapsulate Carotenoids;218
10.2.1;8.2.1 O/W Emulsions;219
10.2.2;8.2.2 Liposomes;231
10.2.3;8.2.3 Production of Nanoparticles by Precipitation;233
10.2.4;8.2.4 Nanoparticles Produced by RESSAS Method;235
10.2.5;8.2.5 Carotenoid Formulation Using Cyclodextrins;236
10.2.6;8.2.6 Encapsulation of Carotenoids in Carbon Nanotubes;237
10.2.7;8.2.7 Encapsulation of Carotenoids in Microspheres;237
10.2.8;8.2.8 Production of Microcapsules by Drying Processes;238
10.3;8.3 Carotenoid Product Formulations;240
10.3.1;8.3.1 Chemical and Physical Stability of Carotenoids in Food Formulations;240
10.3.2;8.3.2 Stability of Carotenoid Formulations During Passage Through the In Vitro Gastro- Intestinal Tract;244
10.3.3;8.3.3 Bioavailability and Cellular Uptake of Carotenoids;248
10.4;8.4 Final Considerations;251
10.5;References;251
11;Encapsulation of Enzymes and Peptides;258
11.1;9.1 General Introduction;258
11.2;9.2 Types of Techniques Used to Encapsulate or Granulate;259
11.2.1;9.2.1 Spray-Drying and Combined Granulation;259
11.2.2;9.2.2 High Shear Granulation;261
11.2.3;9.2.3 Low Shear Granulation;264
11.2.4;9.2.4 Fluid Bed Agglomeration;266
11.2.5;9.2.5 Low Pressure Extrusion and Spheronization;266
11.2.6;9.2.6 Encapsulation in Gel Systems;270
11.2.7;9.2.7 Liposome Technologies;271
11.3;9.3 Conclusions;272
11.4;References;272
12;Encapsulation of Probiotics for use in Food Products;274
12.1;10.1 Probiotics From Research to Consumer;274
12.2;10.2 Isolation and Selection of Probiotic Strains;276
12.3;10.3 Microencapsulation Technology for Probiotics ;277
12.3.1;10.3.1 Protection Needs of Probiotics;277
12.3.2;10.3.2 Spray-Drying;278
12.3.3;10.3.3 Freeze- or Vacuum-Drying;280
12.3.4;10.3.4 Fluid Bed Coating;282
12.3.5;10.3.5 Spray-Cooling;284
12.3.6;10.3.6 Encapsulation of Probiotics in Microspheres;284
12.3.7;10.3.7 Submerged Co-extrusion;290
12.3.8;10.3.8 Twin Screw Extrusion;291
12.3.9;10.3.9 Compression Coating;291
12.4;10.4 Food Applications;292
12.4.1;10.4.1 Challenges for Probiotics in Food Products;292
12.4.2;10.4.2 Yoghurt;294
12.4.3;10.4.3 Cheese;295
12.4.4;10.4.4 Frozen Desserts;296
12.4.5;10.4.5 Powdered Formulations;297
12.4.6;10.4.6 Meat Products;297
12.4.7;10.4.7 Fermented Plant-Based (Vegetarian) Probiotic Products;298
12.4.8;10.4.8 Mayonnaise;299
12.5;10.5 Future Perspectives;299
12.6;References;301
13;Bioprocess Intensification of Beer Fermentation Using Immobilised Cells;308
13.1;11.1 Introduction;308
13.2;11.2 Carrier Materials and Design;309
13.3;11.3 Bioreactor Design;315
13.4;11.4 The Impact of Immobilised Yeast Cell Systems on Beer Flavor;316
13.4.1;11.4.1 Secondary Fermentation Using Immobilised Yeast Cells;317
13.4.2;11.4.2 Alcohol-free or Low-alcohol Beer Using Immobilised Yeast Cells;318
13.4.3;11.4.3 Primary Fermentation with Immobilised Yeast;318
13.5;11.5 Conclusions;324
13.6;References;325
14;Immobilization of Microbial Cells for Alcoholic and Malolactic Fermentation of Wine and Cider;331
14.1;12.1 Introduction;331
14.2;12.2 Cell Immobilization Methods;332
14.3;12.3 Alcoholic Fermentation by Immobilized Cells;333
14.4;12.4 Cell Immobilization and Malolactic Fermentation;336
14.5;12.5 Cell Immobilization in Cider-Making;338
14.6;12.6 Bioreactors in Wine and Cider-Making;339
14.7;12.7 Conclusions;342
14.8;References;343
15;Immobilization of Cells and Enzymes for Fermented Dairy or Meat Products;348
15.1;13.1 Introduction;348
15.2;13.2 For the Production/Inoculation of Lactic Cultures;350
15.3;13.3 For Shorter Fermentation Times;354
15.4;13.4 For Accelerated Flavor Development;356
15.5;13.5 For Protection During Food Processing;357
15.6;13.6 For Improved Stability of Cells During Storage;361
15.7;13.7 For the Inhibition of Undesirable Flora;361
15.8;13.8 Conclusions;362
15.9;References;364
16;Encapsulates for Food Bioconversions and Metabolite Production;369
16.1;14.1 Introduction;369
16.2;14.2 Reactor Design for Immobilized Biocatalysts;371
16.3;14.3 Sugar Conversions;374
16.3.1;14.3.1 Glucose Production;374
16.3.2;14.3.2 Fructose Production;377
16.3.3;14.3.3 Lactose Production;377
16.4;14.4 Use of Immobilized Cells for the Production of Organic Acids;379
16.5;14.5 Amino Acids;383
16.5.1;14.5.1 Production of Amino Acids Using Immobilized Whole Cells;384
16.5.2;14.5.2 Amino Acid Production Using Immobilized Enzymes;385
16.6;14.6 Hydrolysis of Triglycerides 14.6.1 Lipases in Food and Flavor Making;386
16.7;14.7 Conclusions;387
16.8;References;388
17;Index;392




