Zwiggelaar / Strange | Open Problems in Spectral Dimensionality Reduction | Buch | 978-3-319-03942-8 | www.sack.de

Buch, Englisch, 92 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1708 g

Reihe: SpringerBriefs in Computer Science

Zwiggelaar / Strange

Open Problems in Spectral Dimensionality Reduction


2014
ISBN: 978-3-319-03942-8
Verlag: Springer International Publishing

Buch, Englisch, 92 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1708 g

Reihe: SpringerBriefs in Computer Science

ISBN: 978-3-319-03942-8
Verlag: Springer International Publishing


The last few years have seen a great increase in the amount of data available to scientists. Datasets with millions of objects and hundreds, if not thousands of measurements are now commonplace in many disciplines. However, many of the computational techniques used to analyse this data cannot cope with such large datasets. Therefore, strategies need to be employed as a pre-processing step to reduce the number of objects, or measurements, whilst retaining important information inherent to the data. Spectral dimensionality reduction is one such family of methods that has proven to be an indispensable tool in the data processing pipeline. In recent years the area has gained much attention thanks to the development of nonlinear spectral dimensionality reduction methods, often referred to as manifold learning algorithms.

Numerous algorithms and improvements have been proposed for the purpose of performing spectral dimensionality reduction, yet there is still no gold standard technique.

Those wishing to use spectral dimensionality reduction without prior knowledge of the field will immediately be confronted with questions that need answering: What parameter values to use? How many dimensions should the data be embedded into? How are new data points incorporated? What about large-scale data? For many, a search of the literature to find answers to these questions is impractical, as such, there is a need for a concise discussion into the problems themselves, how they affect spectral dimensionality reduction, and how these problems can be overcome.

This book provides a survey and reference aimed at advanced undergraduate and postgraduate students as well as researchers, scientists, and engineers in a wide range of disciplines. Dimensionality reduction has proven useful in a wide range of problem domains and so this book will be applicable to anyone with a solid grounding in statistics and computer science seeking to apply spectral dimensionality to their work.
Zwiggelaar / Strange Open Problems in Spectral Dimensionality Reduction jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction

Spectral Dimensionality Reduction

Modelling the Manifold

Intrinsic Dimensionality

Incorporating New Points

Large Scale Data

Postcript



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.