Buch, Englisch, 560 Seiten, Format (B × H): 163 mm x 239 mm, Gewicht: 839 g
Supramolecular and Self-Assembled Metal-Containing Materials
Buch, Englisch, 560 Seiten, Format (B × H): 163 mm x 239 mm, Gewicht: 839 g
ISBN: 978-0-470-25144-7
Verlag: Wiley
Volume 9 in a scientific research series, covering macromolecules
This book, Macromolecules Containing Metal and Metal-like Elements, presents research developments in the study of: supramolecular chemistry, supramolecular architecture and supramolecular self-assemblies. The topics addressed involve materials containing metals and metal-like elements as well as the possible applications of hybrid materials. The volume offers a broad series of coverage with conclusions and perspectives for the various areas covered.
Autoren/Hrsg.
Weitere Infos & Material
Preface xvii
Series Preface xxi
1. Supramolecular Structures and Functions with Inorganic Building Blocks 1
Katsuhiko Ariga, Ajayan Vinu, Jonathan P. Hill, Pavuluri Srinivasu, Somobrata Acharya, and Qingmin Ji
I. Introduction 2
II. Hybrid Lipid Thin Films 2
III. Layer-by-Layer Assemblies 8
IV. Structure Transcription 13
V. Functional Mesoporous Hybrids 20
VI. Future Perspectives 30
VII. Acknowledgments 30
VIII. References 30
2. Self-Assembly of Hydrophilic Polyoxometalate Macroanions in Dilute Solutions 35
Melissa L. Kistler, Joe Pigga, and Tianbo Liu
I. Introduction 36
II. Solution Behavior of POM Macroions: Soluble but Still Aggregate 38
III. Characterization of the Supramolecular Structures 40
IV. Controlling the Blackberry Formation and Blackberry Size by Changing Solvent Quality 41
V. Counterion Association around Discrete POM Macroions 45
VI. Counterion Condensation around Blackberries 46
VII. Identification of the Driving Forces Responsible for the Blackberry Formation 47
VIII. Soft Nature of the Blackberries—Effect of Additional Hydrogen Bonding 47
IX. Weak Electrolyte Type POMs 48
X. Effect of Additional Electrolytes 49
XI. Kinetic Process of Blackberry Formation 52
XII. Cation Transport over the Anionic Blackberry Membrane 55
XIII. Macroions in Solution: An important Linkage among Simple Ions, Polymers, Colloids, and Biosystems 57
XIV. Conclusions 58
XV. Acknowledgments 58
XVI. References 58
3. Supramolecular Structures and Polyoxometalates 61
Samar K. Das
I. Introduction 62
II. Supramolecular Features of Polyoxometalate-Supported Transition-Metal Complexes 62
III. Polyoxometalate Crown Ether Complexes with Supramolecular cations 91
IV. Supramolecular Water Clusters Associated with Polyoxometalates 103
V. Concluding Remarks 118
VI. Acknowledgements 119
VII. References 120
4. Supramolecular Coordination Networks Employing Sulfonate and Phosphonate Linkers: From Layers to Open Structures 125
George K. H. Shimizu, Jared M. Taylor, and Ramanathan Vaidhyanathan
I. Introduction 126
II. The Sulfonate Group as a Ligand 127
III. Layered Metal Sulfonates 128
IV. Nonlayered Metal Sulfonates 137
A. Dynamic and Crystalline Metal Sulfonate Frameworks 147
B. Hydrogen Bonded Second Sphere Coordination Networks 155
V. Metal phosphonates 167
VI. Conclusion 176
VII. References 177
5. Transition-Metal-Based Linear Chain Compounds 181
Moumita Majumdar, and Jitendra K. Bera
I. Introduction 182
II. Ligand-Supported Metal Chains 183
A. Linear Chains of Chromium 183
B. Linear Metal Chains of Cobalt 187
C. Linear Chains of Copper 197
D. Linear Chains of Nickel 200
E. Linear Chains of Palladium 211
III. Unsupported Metal Chains 221
A. Linear Chain Compounds of Rhodium 221
B. Linear Chain of Iridium 233
C. The Platinum Blues 241
IV. Concluding Remarks 246
V. References 247
6. Boronate-Linked Materials: Ranging from Amorphous Assemblies to Highly Structured Networks 255
Brett M. Rambo, R. William Tilford, Laura M. Lanni, Jie Liu, and John J. Lavigne
I. Introduction and Scope 256
II. Supramolecular Boronate Assemblies 257
A. ‘‘Traditional’’ Hydrogen Bonded Supramolecular Assemblies 258
B. ‘‘Novel’’ Phenyl-Boron-Phenyl Sandwich Supramolecular Assembly 258
C. Coordination-Based Macrocyclic Assemblies 261
D. Coordination-Based Linear Assemblies 267
III. Covalently Linked Boronate Assemblies 270
A. Covalently Linked Macrocyclic and Cage Assemblies 271
B. Covalently Linked Linear Assemblies 279
C. Covalently Linked Network Assemblies 284
IV. Summary and Outlook 289
V. References 291
7. Mixed-Metal Supramolecular Complexes Coupling Polyazine Light Absorbers and Reactive Metal Centers 295
Shamindri M. Arachchige, and Karen J. Brewer
I. Introduction 299
A. Light Absorption 300
i. Molecular Photovoltaics 301
ii. Ruthenium Charge Transfer Light Absorbers 301
iii. Osmium Charge Transfer Light Absorbers 303
B. Solar Water Splitting 304
C. Metal Complexes as DNA Targeting Agents 306
D. Supramolecular Charge Transfer Complexes 306
E. Cyclic Voltammetry of Charge Transfer Light Absorbers 308
II. Supramolecular Complexes Coupling Ru(II) or Os(II) Polyazine Light Absorbers and Rh(III) Reactive Metal Centers 309
A. The Complexes [(bpy)2Ru(BL)RhH2(PPh3)2]3+ 309
i. Redox Properties of [(bpy)2Ru(BL)RhH2(PPh3)2]3+ 309
ii. Spectroscopic Properties of [(bpy)2Ru(BL)RhH2(PPh3)2]3+ 311
iii. Photophysical and Photochemical Properties of [(bpy)2Ru(BL)RhH2(PPh3)2]3+ 311
B. Cyanide-Bridged Ru(II)-Rh(III) Complexes 312
i. Redox Properties of Cyanide-Bridged Ru(II)-Rh(III) Complexes 312
ii. Spectroscopic Properties of Cyanide-Bridged Ru(II)-Rh(III) Complexes 313
iii. Photophysical and Photochemical Properties of Cyanide-Bridged Ru(II)-Rh(III) Complexes 313
C. Polyazine-Bridged [(bpy)2Ru(dpp)Rh(bPy)25+ 314
i. Redox Properties of [(bpy)2Ru(dpp)Rh(bPy)25+ 314
ii. Spectroscopic Properties of [(bpy)2Ru(dpp)Rh(bpy)25+ 314
iii. Photophysical and Photochemical Properties of [(bpy)2Ru(dpp)Rh(bpy)25+ 315
D. Tridentate-Bridged Complexes: [(ttpy)Ru(tpy-(Ph)n-tpy)Rh(ttpy)]5+ (n = 0-2) 315
i. Redox Properties of [(ttpy)Ru(tpy-(Ph)n-tpy)Rh(ttpy)]5+ 316
ii. Spectroscopic Properties of [(ttpy)Ru(tpy-(Ph)n-tpy)Rh(ttpy)]5+ 317
iii. Photophysical and Photochemical Properties of [(ttpy)Ru(tpy-(Ph)n-tpy)Rh(ttpy)]5+ 317
E. Ru(II)-Rh(III) Complexes Bridged with a Flexible Spacer: [(Me2phen)2Ru(Mebpy-CH2-CH2-Mebpy)Rh(Me 2bpy)2]5+ 319
i. Redox Properties of [(Me2phen)2Ru(Mebpy-CH2-CH2-Mebpy)Rh(Me2bpy)2]5+ 320
ii. Spectroscopic Properties of [(Me2phen)2Ru(Mebpy-CH2-CH2-Mebpy)Rh(Me2bpy)2]5+ 320
iii. Photochemical and Photophysical Properties of [(Me2phen)2Ru(Mebpy-CH2-CH2-Mebpy)Rh(Me2bpy)2 ]5+ 321
F. Dendrimeric Ru(II)/Os(II)-Rh(III) Complexes: [M{(dpp)Rh(ppy)2}3](PF6)5 321
i. Redox Properties of [M{(dpp)Rh(ppy)2}3](PF6)5 322
ii. Spectroscopic Properties of [M{(dpp) Rh(ppy)2}3](PF6)5 323
iii. Photophysical and Photochemical Properties of [M{(dpp)Rh(ppy)2}3](PF6)5 323
G. Extended Supramolecular Architectures with Fe(II)/Ru(II)/Rh(III) 324
H. Stereochemically Defined Tridentate-Bridged Ru(II)-Rh(III) Complex 324
i. Redox Properties of [(tpy)Ru(tppz)RhCl3](PF6)2 325
ii. Spectroscopic Properties of [(tpy)Ru(tppz)RhCl3](PF6)2 326
iii. Photophysical and Photochemical Properties of [(tpy)Ru(tppz)RhCl3](PF6)2 326
I. Photoinitiated Electron Collection 327
i. LA-BL-Rh-BL-LA Supramolecular Assemblies 328
ii. Redox Properties of LA-BL-Rh-BL-LA 328
iii. Spectroscopic Properties of LA-BL-Rh-BL-LA 330
iv. Photochemical and Photophysical Properties of LA-BL-Rh-BL-LA 331
v. Photoinitiated Electron Collection on a Rhodium Center 332
vi. Photochemistry with LA-BL-Rh-BL-LA Architectures 333
III. Supramolecular Complexes Coupling Ru(II) or Os(II) Polyazine Light Absorbers to Reactive Pt(II) Metal Centers 338
A. Cyanide-Bridged Ru(II)-Pt(II) Complexes: [(bpy)2(CN)Ru(CN)Pt(dien)](ClO4)2 and [(dien)Pt(NC)(bpy)2 Ru(CN)Pt(dien)](ClO4)4 338
i. Redox Properties of [(bpy)2(CN)Ru(CN)Pt(dien)](ClO4)2 and [(dien)Pt(NC)(bpy)2Ru(CN)Pt(dien)](ClO4)4 338
ii. Spectroscopic Properties of [(bpy)2(CN)Ru(CN)Pt(dien)](ClO4)2 and [(dien)Pt(NC)(bpy)2 Ru(CN)Pt(dien)](ClO4)4 339
iii. Photochemical and Photophysical Properties of [(bpy)2(CN)Ru(CN)Pt(dien)](ClO4)2 and [(dien)Pt(NC)(bpy)2Ru(CN)Pt(dien)](ClO4)4 339
B. A Ru(II)-Pt(II) Complex as a Chemodosimeter 340
C. Ru(II)-Pt(II) Complexes Bridged by Flexible Spacers 341
i. Redox Properties of [(bpy)2Ru(Mebpy-CH2-CH2-Mebpy)PtCl2](PF6)2 341
ii. Spectroscopic Properties of [(bpy)2Ru(Mebpy-CH2-CH2-Mebpy)PtCl2](PF6)2 341
D. A bpm-Bridged Ru(II)-Pt(II) Complex: [(bpy)2Ru(bpm)PtCl2]2+ 342
i. Redox Properties of [(bpy)2Ru(bpm)PtCl2]2+ 342
ii. Spectroscopic Properties of [(bpy)2Ru(bpm)PtCl2]2+ 343
E. Ru(II)-Pt(II) dpp-Bridged Complexes: [(bpy)2Ru(dpp)PtMe2]2+ and [(bpy)2Ru(dpp)PtCl2]2+ 343
i. Redox Properties of [(bpy)2Ru(dpp)PtMe2]2+ and [(bpy)2Ru(dpp)PtCl2]2+ 343
ii. Spectroscopic Properties of [(bpy)2Ru(dpp)PtMe2]2+ and [(bpy)2Ru(dpp)PtCl2]2+ 344
iii. Photophysical and Photochemical Properties of [(bpy)2Ru(dpp)PtMe2]2+ and [(bpy)2Ru(dpp)PtCl2]2+ 344
F. Ru(II)-Pt(II) Complexes Bridged by a BL Ligand with Two Inequivalent Sites 345
i. Redox Properties of [(bpy)2Ru(AB)PtCl2](PF6)2 and [(bpy)2Ru(BA)PtCl2](PF6)2 345
ii. Spectroscopic Properties of [(bpy)2Ru(AB)PtCl2](PF6)2 and [(bpy)2Ru(BA)PtCl2](PF6)2 346
iii. Photophysical and Photochemical Properties of [(bpy)2Ru(AB)PtCl2](PF6)2 and [(bpy)2 Ru(BA)PtCl2 ](PF6)2 346
G. DNA Binding of the Ru(II)-Pt(II) Complex: [(tpy)Ru(dtdeg)PtCl]Cl3 347
H. Ru(II)-Pt(II) Complexes with Amino Linkages: [(bpy)2Ru(BL)PtCl2](PF6)2(BL = bpy(CONH(CH2)3NH2)2 and phenNHCO(COOHbpy)) 347
i. Photophysical Properties and DNA Binding Ability of [(bpy)2Ru(BL)PtCl2](PF6)2 348
ii. Photophysical Properties and Photocatalytic Activity of [(bpy)2Ru(BL)PtCl2](PF6)2 348
I. Systematic Studies of Ru(II)/Os(II)-Pt(II) Complexes with Polyazine Bridging Ligands 349
i. Redox Properties [(bpy)2M(BL)PtCl2](PF6)2 349
ii. Spectroscopic Properties of [(bpy)2M(BL)PtCl2](PF6)2 351
iii. DNA Binding by [(bpy)2M(dpb)PtCl2](PF6)2 353
J. Dendrimeric Ru(II)-Pt(II) Complexes Bridged by Polyazine Bridging Ligands 354
i. Redox and Spectroscopic Properties of [Ru{(dpq) (PtCl2)}3](PF6)2 354
ii. Multifunctional DNA Binding and Photocleavage Agent: [{(bpy)2Ru(dpp)}2Ru(dpp)PtCl2](PF6)6 355
IV. Supramolecular Complexes Coupling Ru(II) Polyazine Light Absorbers to Reactive Pd(II) Metal Centers 356
A. Ru(II)-Pd(II) Complexes Bridged by dpp and bpm Ligands: [(bpy)2Ru(dpp)PdCl2](PF6)2 and [(bpy)2 Ru(bpm)PdCl2](ClO4)2 356
i. Redox Properties of [(bpy)2Ru(dpp)PdCl2](PF6)2 and [(bpy)2 Ru(bpm)PdCl2](ClO4)2 356
ii. Spectroscopic Properties of [(bpy)2Ru(dpp)PdCl2](PF6)2 and [(bpy)2Ru(bpm)PdCl2](ClO4)2 356
B. Ru(II)-Pd(II) Complexes Bridged by an Extended Polyazine Ligand: [(tBu2bpy)2Ru(tpphz)PdCl2](PF6)2 357
i. Spectroscopic Properties of [(tBu2bpy)2Ru(tpphz)PdCl2](PF6)2 358
C. Ru(II)-Pd(II) Complexes Bridged by bpm type Ligands: [(bpy)2Ru(BL)PdMeCl]2+ 358
D. A Ru(II)-Pd(II) Complex Bridged by a Flexible Polyazine Bridging Ligand: [(bpy)2Ru(DMB)PdCl2]2+ 359
i. Redox and Spectroscopic Properties of (bpy)2Ru(DMB)PdCl2]2+ 359
ii. Photochemistry of [(bpy)2Ru(DMB)PdCl2]2+ 359
V. Conclusions 364
VI. Acknowledgments 366
VII. References 366
8. Supramolecular Hybrid Materials—Integrating Functionality with Sensing 369
Ramo´n Marti´nez-Ma´n˜ez, Fe´lix Sanceno´n, Ana Bele´n Descalzo, and Knut Rurack
I. Introduction 370
II. Enhanced Coordination by Preorganization. Surface Chelate Effect and Signaling 371
III. Enhanced Signaling by Preorganization 378
IV. Assembly-Disassembly 381
V. Selectivity by Polarity and Size. Biomimetic Signaling 386
VI. Switching, Gating and Signaling 391
VII. Conclusions 399
VIII. Acknowledgments 400
IX. References 400
9. Molecular Recognition Process between Nucleobases and Metal-Oxalato Frameworks 407
Oscar Castillo, Antonio Luque, Juan P. Garciá-Tera´n, and Pilar Amo-Ochoa
I. Introduction 408
A. Molecular Recognition 408
B. Nucleobases 409
C. Oxalate 412
II. Metal-Oxalato-Nucleobase Extended Systems 413
III. Other metal-nucleobase 1D Extended Systems 427
VI. Hybrid Systems Based on Metal-Oxalato and Protonated Nucleobases 433
V. Conclusions 443
VI. References 443
10. Crystal Engineering of Coordination Polymers 451
Marius Andruh, and Catalina Ruiz-Pe´rez
I. Introduction 452
II. Synthetic Approaches 453
A. The Node-and-Spacer Paradigm 454
i. Bridging ligands 455
ii. Oligonuclear Complexes as Nodes 461
a. Alkoxo-Bridged Binuclear Copper(II) Complexes as Nodes 463
b. Homobinuclear Complexes with Compartmental Ligands as Nodes 468
c. Heterobinuclear Complexes as Node 473
d. Heterotrimetallic Coordination Polymers 478
B. Flexible Ligand Approach: Polycarboxylates as Anionic Linkers. A Case Study—Malonato Complexes 479
i. Dicarboxylates 480
ii. The Case of Malonate. 482
iii. Influence of the synthetic conditions 482
iv. The use of co-ligands 489
v. Ligand Adaptation 493
vi. Perspectives 497
C. The Building-Block Approach 497
i. Oxalato-Bridged Coordination Ploymers 498
ii. Bisoxamidato Complexes as Building Blocks 501
iii. Cyano-Bridged Coordination Polymers 501
III. Conclusions and Perspectives 505
IV. Acknowledgments 506
V. References 506
Index 513