Abd-El-Aziz / Carraher / Pittman | Macromolecules Containing Metal and Metal-Like Elements, Volume 9 | Buch | 978-0-470-25144-7 | sack.de

Buch, Englisch, 560 Seiten, Format (B × H): 163 mm x 239 mm, Gewicht: 839 g

Abd-El-Aziz / Carraher / Pittman

Macromolecules Containing Metal and Metal-Like Elements, Volume 9

Supramolecular and Self-Assembled Metal-Containing Materials
1. Auflage 2009
ISBN: 978-0-470-25144-7
Verlag: Wiley

Supramolecular and Self-Assembled Metal-Containing Materials

Buch, Englisch, 560 Seiten, Format (B × H): 163 mm x 239 mm, Gewicht: 839 g

ISBN: 978-0-470-25144-7
Verlag: Wiley


Volume 9 in a scientific research series, covering macromolecules
This book, Macromolecules Containing Metal and Metal-like Elements, presents research developments in the study of: supramolecular chemistry, supramolecular architecture and supramolecular self-assemblies. The topics addressed involve materials containing metals and metal-like elements as well as the possible applications of hybrid materials. The volume offers a broad series of coverage with conclusions and perspectives for the various areas covered.

Abd-El-Aziz / Carraher / Pittman Macromolecules Containing Metal and Metal-Like Elements, Volume 9 jetzt bestellen!

Weitere Infos & Material


Preface xvii

Series Preface xxi

1. Supramolecular Structures and Functions with Inorganic Building Blocks 1
Katsuhiko Ariga, Ajayan Vinu, Jonathan P. Hill, Pavuluri Srinivasu, Somobrata Acharya, and Qingmin Ji

I. Introduction 2

II. Hybrid Lipid Thin Films 2

III. Layer-by-Layer Assemblies 8

IV. Structure Transcription 13

V. Functional Mesoporous Hybrids 20

VI. Future Perspectives 30

VII. Acknowledgments 30

VIII. References 30

2. Self-Assembly of Hydrophilic Polyoxometalate Macroanions in Dilute Solutions 35
Melissa L. Kistler, Joe Pigga, and Tianbo Liu

I. Introduction 36

II. Solution Behavior of POM Macroions: Soluble but Still Aggregate 38

III. Characterization of the Supramolecular Structures 40

IV. Controlling the Blackberry Formation and Blackberry Size by Changing Solvent Quality 41

V. Counterion Association around Discrete POM Macroions 45

VI. Counterion Condensation around Blackberries 46

VII. Identification of the Driving Forces Responsible for the Blackberry Formation 47

VIII. Soft Nature of the Blackberries—Effect of Additional Hydrogen Bonding 47

IX. Weak Electrolyte Type POMs 48

X. Effect of Additional Electrolytes 49

XI. Kinetic Process of Blackberry Formation 52

XII. Cation Transport over the Anionic Blackberry Membrane 55

XIII. Macroions in Solution: An important Linkage among Simple Ions, Polymers, Colloids, and Biosystems 57

XIV. Conclusions 58

XV. Acknowledgments 58

XVI. References 58

3. Supramolecular Structures and Polyoxometalates 61
Samar K. Das

I. Introduction 62

II. Supramolecular Features of Polyoxometalate-Supported Transition-Metal Complexes 62

III. Polyoxometalate Crown Ether Complexes with Supramolecular cations 91

IV. Supramolecular Water Clusters Associated with Polyoxometalates 103

V. Concluding Remarks 118

VI. Acknowledgements 119

VII. References 120

4. Supramolecular Coordination Networks Employing Sulfonate and Phosphonate Linkers: From Layers to Open Structures 125
George K. H. Shimizu, Jared M. Taylor, and Ramanathan Vaidhyanathan

I. Introduction 126

II. The Sulfonate Group as a Ligand 127

III. Layered Metal Sulfonates 128

IV. Nonlayered Metal Sulfonates 137

A. Dynamic and Crystalline Metal Sulfonate Frameworks 147

B. Hydrogen Bonded Second Sphere Coordination Networks 155

V. Metal phosphonates 167

VI. Conclusion 176

VII. References 177

5. Transition-Metal-Based Linear Chain Compounds 181
Moumita Majumdar, and Jitendra K. Bera

I. Introduction 182

II. Ligand-Supported Metal Chains 183

A. Linear Chains of Chromium 183

B. Linear Metal Chains of Cobalt 187

C. Linear Chains of Copper 197

D. Linear Chains of Nickel 200

E. Linear Chains of Palladium 211

III. Unsupported Metal Chains 221

A. Linear Chain Compounds of Rhodium 221

B. Linear Chain of Iridium 233

C. The Platinum Blues 241

IV. Concluding Remarks 246

V. References 247

6. Boronate-Linked Materials: Ranging from Amorphous Assemblies to Highly Structured Networks 255
Brett M. Rambo, R. William Tilford, Laura M. Lanni, Jie Liu, and John J. Lavigne

I. Introduction and Scope 256

II. Supramolecular Boronate Assemblies 257

A. ‘‘Traditional’’ Hydrogen Bonded Supramolecular Assemblies 258

B. ‘‘Novel’’ Phenyl-Boron-Phenyl Sandwich Supramolecular Assembly 258

C. Coordination-Based Macrocyclic Assemblies 261

D. Coordination-Based Linear Assemblies 267

III. Covalently Linked Boronate Assemblies 270

A. Covalently Linked Macrocyclic and Cage Assemblies 271

B. Covalently Linked Linear Assemblies 279

C. Covalently Linked Network Assemblies 284

IV. Summary and Outlook 289

V. References 291

7. Mixed-Metal Supramolecular Complexes Coupling Polyazine Light Absorbers and Reactive Metal Centers 295
Shamindri M. Arachchige, and Karen J. Brewer

I. Introduction 299

A. Light Absorption 300

i. Molecular Photovoltaics 301

ii. Ruthenium Charge Transfer Light Absorbers 301

iii. Osmium Charge Transfer Light Absorbers 303

B. Solar Water Splitting 304

C. Metal Complexes as DNA Targeting Agents 306

D. Supramolecular Charge Transfer Complexes 306

E. Cyclic Voltammetry of Charge Transfer Light Absorbers 308

II. Supramolecular Complexes Coupling Ru(II) or Os(II) Polyazine Light Absorbers and Rh(III) Reactive Metal Centers 309

A. The Complexes [(bpy)2Ru(BL)RhH2(PPh3)2]3+ 309

i. Redox Properties of [(bpy)2Ru(BL)RhH2(PPh3)2]3+ 309

ii. Spectroscopic Properties of [(bpy)2Ru(BL)RhH2(PPh3)2]3+ 311

iii. Photophysical and Photochemical Properties of [(bpy)2Ru(BL)RhH2(PPh3)2]3+ 311

B. Cyanide-Bridged Ru(II)-Rh(III) Complexes 312

i. Redox Properties of Cyanide-Bridged Ru(II)-Rh(III) Complexes 312

ii. Spectroscopic Properties of Cyanide-Bridged Ru(II)-Rh(III) Complexes 313

iii. Photophysical and Photochemical Properties of Cyanide-Bridged Ru(II)-Rh(III) Complexes 313

C. Polyazine-Bridged [(bpy)2Ru(dpp)Rh(bPy)25+ 314

i. Redox Properties of [(bpy)2Ru(dpp)Rh(bPy)25+ 314

ii. Spectroscopic Properties of [(bpy)2Ru(dpp)Rh(bpy)25+ 314

iii. Photophysical and Photochemical Properties of [(bpy)2Ru(dpp)Rh(bpy)25+ 315

D. Tridentate-Bridged Complexes: [(ttpy)Ru(tpy-(Ph)n-tpy)Rh(ttpy)]5+ (n = 0-2) 315

i. Redox Properties of [(ttpy)Ru(tpy-(Ph)n-tpy)Rh(ttpy)]5+ 316

ii. Spectroscopic Properties of [(ttpy)Ru(tpy-(Ph)n-tpy)Rh(ttpy)]5+ 317

iii. Photophysical and Photochemical Properties of [(ttpy)Ru(tpy-(Ph)n-tpy)Rh(ttpy)]5+ 317

E. Ru(II)-Rh(III) Complexes Bridged with a Flexible Spacer: [(Me2phen)2Ru(Mebpy-CH2-CH2-Mebpy)Rh(Me 2bpy)2]5+ 319

i. Redox Properties of [(Me2phen)2Ru(Mebpy-CH2-CH2-Mebpy)Rh(Me2bpy)2]5+ 320

ii. Spectroscopic Properties of [(Me2phen)2Ru(Mebpy-CH2-CH2-Mebpy)Rh(Me2bpy)2]5+ 320

iii. Photochemical and Photophysical Properties of [(Me2phen)2Ru(Mebpy-CH2-CH2-Mebpy)Rh(Me2bpy)2 ]5+ 321

F. Dendrimeric Ru(II)/Os(II)-Rh(III) Complexes: [M{(dpp)Rh(ppy)2}3](PF6)5 321

i. Redox Properties of [M{(dpp)Rh(ppy)2}3](PF6)5 322

ii. Spectroscopic Properties of [M{(dpp) Rh(ppy)2}3](PF6)5 323

iii. Photophysical and Photochemical Properties of [M{(dpp)Rh(ppy)2}3](PF6)5 323

G. Extended Supramolecular Architectures with Fe(II)/Ru(II)/Rh(III) 324

H. Stereochemically Defined Tridentate-Bridged Ru(II)-Rh(III) Complex 324

i. Redox Properties of [(tpy)Ru(tppz)RhCl3](PF6)2 325

ii. Spectroscopic Properties of [(tpy)Ru(tppz)RhCl3](PF6)2 326

iii. Photophysical and Photochemical Properties of [(tpy)Ru(tppz)RhCl3](PF6)2 326

I. Photoinitiated Electron Collection 327

i. LA-BL-Rh-BL-LA Supramolecular Assemblies 328

ii. Redox Properties of LA-BL-Rh-BL-LA 328

iii. Spectroscopic Properties of LA-BL-Rh-BL-LA 330

iv. Photochemical and Photophysical Properties of LA-BL-Rh-BL-LA 331

v. Photoinitiated Electron Collection on a Rhodium Center 332

vi. Photochemistry with LA-BL-Rh-BL-LA Architectures 333

III. Supramolecular Complexes Coupling Ru(II) or Os(II) Polyazine Light Absorbers to Reactive Pt(II) Metal Centers 338

A. Cyanide-Bridged Ru(II)-Pt(II) Complexes: [(bpy)2(CN)Ru(CN)Pt(dien)](ClO4)2 and [(dien)Pt(NC)(bpy)2 Ru(CN)Pt(dien)](ClO4)4 338

i. Redox Properties of [(bpy)2(CN)Ru(CN)Pt(dien)](ClO4)2 and [(dien)Pt(NC)(bpy)2Ru(CN)Pt(dien)](ClO4)4 338

ii. Spectroscopic Properties of [(bpy)2(CN)Ru(CN)Pt(dien)](ClO4)2 and [(dien)Pt(NC)(bpy)2 Ru(CN)Pt(dien)](ClO4)4 339

iii. Photochemical and Photophysical Properties of [(bpy)2(CN)Ru(CN)Pt(dien)](ClO4)2 and [(dien)Pt(NC)(bpy)2Ru(CN)Pt(dien)](ClO4)4 339

B. A Ru(II)-Pt(II) Complex as a Chemodosimeter 340

C. Ru(II)-Pt(II) Complexes Bridged by Flexible Spacers 341

i. Redox Properties of [(bpy)2Ru(Mebpy-CH2-CH2-Mebpy)PtCl2](PF6)2 341

ii. Spectroscopic Properties of [(bpy)2Ru(Mebpy-CH2-CH2-Mebpy)PtCl2](PF6)2 341

D. A bpm-Bridged Ru(II)-Pt(II) Complex: [(bpy)2Ru(bpm)PtCl2]2+ 342

i. Redox Properties of [(bpy)2Ru(bpm)PtCl2]2+ 342

ii. Spectroscopic Properties of [(bpy)2Ru(bpm)PtCl2]2+ 343

E. Ru(II)-Pt(II) dpp-Bridged Complexes: [(bpy)2Ru(dpp)PtMe2]2+ and [(bpy)2Ru(dpp)PtCl2]2+ 343

i. Redox Properties of [(bpy)2Ru(dpp)PtMe2]2+ and [(bpy)2Ru(dpp)PtCl2]2+ 343

ii. Spectroscopic Properties of [(bpy)2Ru(dpp)PtMe2]2+ and [(bpy)2Ru(dpp)PtCl2]2+ 344

iii. Photophysical and Photochemical Properties of [(bpy)2Ru(dpp)PtMe2]2+ and [(bpy)2Ru(dpp)PtCl2]2+ 344

F. Ru(II)-Pt(II) Complexes Bridged by a BL Ligand with Two Inequivalent Sites 345

i. Redox Properties of [(bpy)2Ru(AB)PtCl2](PF6)2 and [(bpy)2Ru(BA)PtCl2](PF6)2 345

ii. Spectroscopic Properties of [(bpy)2Ru(AB)PtCl2](PF6)2 and [(bpy)2Ru(BA)PtCl2](PF6)2 346

iii. Photophysical and Photochemical Properties of [(bpy)2Ru(AB)PtCl2](PF6)2 and [(bpy)2 Ru(BA)PtCl2 ](PF6)2 346

G. DNA Binding of the Ru(II)-Pt(II) Complex: [(tpy)Ru(dtdeg)PtCl]Cl3 347

H. Ru(II)-Pt(II) Complexes with Amino Linkages: [(bpy)2Ru(BL)PtCl2](PF6)2(BL = bpy(CONH(CH2)3NH2)2 and phenNHCO(COOHbpy)) 347

i. Photophysical Properties and DNA Binding Ability of [(bpy)2Ru(BL)PtCl2](PF6)2 348

ii. Photophysical Properties and Photocatalytic Activity of [(bpy)2Ru(BL)PtCl2](PF6)2 348

I. Systematic Studies of Ru(II)/Os(II)-Pt(II) Complexes with Polyazine Bridging Ligands 349

i. Redox Properties [(bpy)2M(BL)PtCl2](PF6)2 349

ii. Spectroscopic Properties of [(bpy)2M(BL)PtCl2](PF6)2 351

iii. DNA Binding by [(bpy)2M(dpb)PtCl2](PF6)2 353

J. Dendrimeric Ru(II)-Pt(II) Complexes Bridged by Polyazine Bridging Ligands 354

i. Redox and Spectroscopic Properties of [Ru{(dpq) (PtCl2)}3](PF6)2 354

ii. Multifunctional DNA Binding and Photocleavage Agent: [{(bpy)2Ru(dpp)}2Ru(dpp)PtCl2](PF6)6 355

IV. Supramolecular Complexes Coupling Ru(II) Polyazine Light Absorbers to Reactive Pd(II) Metal Centers 356

A. Ru(II)-Pd(II) Complexes Bridged by dpp and bpm Ligands: [(bpy)2Ru(dpp)PdCl2](PF6)2 and [(bpy)2 Ru(bpm)PdCl2](ClO4)2 356

i. Redox Properties of [(bpy)2Ru(dpp)PdCl2](PF6)2 and [(bpy)2 Ru(bpm)PdCl2](ClO4)2 356

ii. Spectroscopic Properties of [(bpy)2Ru(dpp)PdCl2](PF6)2 and [(bpy)2Ru(bpm)PdCl2](ClO4)2 356

B. Ru(II)-Pd(II) Complexes Bridged by an Extended Polyazine Ligand: [(tBu2bpy)2Ru(tpphz)PdCl2](PF6)2 357

i. Spectroscopic Properties of [(tBu2bpy)2Ru(tpphz)PdCl2](PF6)2 358

C. Ru(II)-Pd(II) Complexes Bridged by bpm type Ligands: [(bpy)2Ru(BL)PdMeCl]2+ 358

D. A Ru(II)-Pd(II) Complex Bridged by a Flexible Polyazine Bridging Ligand: [(bpy)2Ru(DMB)PdCl2]2+ 359

i. Redox and Spectroscopic Properties of (bpy)2Ru(DMB)PdCl2]2+ 359

ii. Photochemistry of [(bpy)2Ru(DMB)PdCl2]2+ 359

V. Conclusions 364

VI. Acknowledgments 366

VII. References 366

8. Supramolecular Hybrid Materials—Integrating Functionality with Sensing 369
Ramo´n Marti´nez-Ma´n˜ez, Fe´lix Sanceno´n, Ana Bele´n Descalzo, and Knut Rurack

I. Introduction 370

II. Enhanced Coordination by Preorganization. Surface Chelate Effect and Signaling 371

III. Enhanced Signaling by Preorganization 378

IV. Assembly-Disassembly 381

V. Selectivity by Polarity and Size. Biomimetic Signaling 386

VI. Switching, Gating and Signaling 391

VII. Conclusions 399

VIII. Acknowledgments 400

IX. References 400

9. Molecular Recognition Process between Nucleobases and Metal-Oxalato Frameworks 407
Oscar Castillo, Antonio Luque, Juan P. Garciá-Tera´n, and Pilar Amo-Ochoa

I. Introduction 408

A. Molecular Recognition 408

B. Nucleobases 409

C. Oxalate 412

II. Metal-Oxalato-Nucleobase Extended Systems 413

III. Other metal-nucleobase 1D Extended Systems 427

VI. Hybrid Systems Based on Metal-Oxalato and Protonated Nucleobases 433

V. Conclusions 443

VI. References 443

10. Crystal Engineering of Coordination Polymers 451
Marius Andruh, and Catalina Ruiz-Pe´rez

I. Introduction 452

II. Synthetic Approaches 453

A. The Node-and-Spacer Paradigm 454

i. Bridging ligands 455

ii. Oligonuclear Complexes as Nodes 461

a. Alkoxo-Bridged Binuclear Copper(II) Complexes as Nodes 463

b. Homobinuclear Complexes with Compartmental Ligands as Nodes 468

c. Heterobinuclear Complexes as Node 473

d. Heterotrimetallic Coordination Polymers 478

B. Flexible Ligand Approach: Polycarboxylates as Anionic Linkers. A Case Study—Malonato Complexes 479

i. Dicarboxylates 480

ii. The Case of Malonate. 482

iii. Influence of the synthetic conditions 482

iv. The use of co-ligands 489

v. Ligand Adaptation 493

vi. Perspectives 497

C. The Building-Block Approach 497

i. Oxalato-Bridged Coordination Ploymers 498

ii. Bisoxamidato Complexes as Building Blocks 501

iii. Cyano-Bridged Coordination Polymers 501

III. Conclusions and Perspectives 505

IV. Acknowledgments 506

V. References 506

Index 513


Alaa S. Abd-El-Aziz is the Associate Vice-President (Academic and Research) at theUniversity ofBritish Columbia Okanagan. In 1997, he was named a Fellow of the Chemical Institute of Canada, and has been the recipient of a number of awards including the Manitoba Outstanding Chemist Award, the Erica & Arnold Rogers Award for Excellence in Research and Scholarship, and the Clifford J. Robson Memorial Award for Excellence in Teaching.

Charles Carraher is Professor of Chemistry atFloridaAtlanticUniversity and Associate Director of theFloridaCenter for Environmental Studies. Dr. Carraher previously was Dean of the Charles E.Schmidt College of Science at FAU, Chair of the Science Division at theUniversity ofSouth Dakota and Chair of the Department of Chemistry at Wright State University. His research deals with the general topic of polymers as applied to electronics, computers, biomedicine, instrumentation and construction.

Charles Pittman came to Mississippi State in 1983 as Professor of Industrial Chemistry and Catalysis. He was appointed Full Professor in 1975 and University Research Professor in 1977. He is also Research Director of the University/Industry Chemical Research Center.

Martin Zeldin is Visiting Senior Research Scholar at the University of Richmond in Virginia. He received his Ph.D. in inorganic chemistry in 1968 from Pennsylvania State University.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.