Ackleh / Allen / Kearfott | Classical and Modern Numerical Analysis | Buch | 978-1-4200-9157-1 | sack.de

Buch, Englisch, 616 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1101 g

Reihe: Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series

Ackleh / Allen / Kearfott

Classical and Modern Numerical Analysis

Theory, Methods and Practice
1. Auflage 2009
ISBN: 978-1-4200-9157-1
Verlag: Chapman and Hall/CRC

Theory, Methods and Practice

Buch, Englisch, 616 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1101 g

Reihe: Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series

ISBN: 978-1-4200-9157-1
Verlag: Chapman and Hall/CRC


Classical and Modern Numerical Analysis: Theory, Methods and Practice provides a sound foundation in numerical analysis for more specialized topics, such as finite element theory, advanced numerical linear algebra, and optimization. It prepares graduate students for taking doctoral examinations in numerical analysis.

The text covers the main areas of introductory numerical analysis, including the solution of nonlinear equations, numerical linear algebra, ordinary differential equations, approximation theory, numerical integration, and boundary value problems. Focusing on interval computing in numerical analysis, it explains interval arithmetic, interval computation, and interval algorithms. The authors illustrate the concepts with many examples as well as analytical and computational exercises at the end of each chapter.

This advanced, graduate-level introduction to the theory and methods of numerical analysis supplies the necessary background in numerical methods so that students can apply the techniques and understand the mathematical literature in this area. Although the book is independent of a specific computer program, MATLAB® code is available on the authors' website to illustrate various concepts.

Ackleh / Allen / Kearfott Classical and Modern Numerical Analysis jetzt bestellen!

Weitere Infos & Material


Mathematical Review and Computer Arithmetic. Numerical Solution of Nonlinear Equations of One Variable. Numerical Linear Algebra. Approximation Theory. Eigenvalue-Eigenvector Computation. Numerical Differentiation and Integration. Initial Value Problems for Ordinary Differential Equations. Numerical Solution of Systems of Nonlinear Equations. Optimization. Boundary Value Problems and Integral Equations. Appendix. References. Index.


Azmy S. Ackleh is Dr. Ray P. Authement/BORSF Eminent Scholar Endowed Chair in Computational Mathematics at the University of Louisiana. Dr. Ackleh has more than fifteen years experience in mathematical biology with an emphasis on the long-time behavior of discrete and continuous population models and numerical methods for structured-population models.

Edward James Allen is a professor of mathematics at Texas Tech University. Dr. Allen works primarily on the derivation and computation of stochastic differential equation models in biology and physics and on the development and analysis of numerical methods for problems in neutron transport.

R. Baker Kearfott is a professor of mathematics at the University of Louisiana, with over thirty years experience teaching numerical analysis. Dr. Kearfott’s research focuses on nonlinear equations, nonlinear optimization, and mathematically rigorous numerical analysis.

Padmanabhan Seshaiyer is an associate professor of mathematical sciences at George Mason University. Dr. Seshaiyer has done extensive work on the theoretical and computational aspects of finite element methods and applications of numerical methods to biological and bio-inspired problems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.