Buch, Englisch, 153 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 294 g
Reihe: Frontiers in Mathematics
Civil Wars When Strategy Comes Into Play
Buch, Englisch, 153 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 294 g
Reihe: Frontiers in Mathematics
ISBN: 978-3-031-67209-5
Verlag: Springer Nature Switzerland
This monograph introduces a new mathematical model in population dynamics that describes two species sharing the same environmental resources in a situation of open hostility. Its main feature is the expansion of the family of Lotka-Volterra systems by introducing a new term that defines aggression. Because the model is flexible, it can be applied to various scenarios in the context of human populations, such as strategy games, competition in the marketplace, and civil wars.
Drawing from a variety of methodologies within dynamical systems, ODEs, and mathematical biology, the authors' approach focuses on the dynamical properties of the system. This is accomplished by detecting and describing all possible equilibria, and analyzing the strategies that may lead to the victory of the aggressive population. Techniques typical of two-dimensional dynamical systems are used, such as asymptotic behaviors regulated by the Poincaré–Bendixson Theorem.
will appeal to researchers and students studying population dynamics and dynamical systems, particularly those interested in the cross section between mathematics and ecology.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Optimierung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
Weitere Infos & Material
Introduction.- Description of the model.- Description of the main results.- Toolbox.- Basins of attraction.- Parameters dependence.- Strategies of the first population.