Buch, Englisch, Band 67, 203 Seiten, Format (B × H): 161 mm x 236 mm, Gewicht: 499 g
Reihe: Progress in Nonlinear Differential Equations and Their Applications
Buch, Englisch, Band 67, 203 Seiten, Format (B × H): 161 mm x 236 mm, Gewicht: 499 g
Reihe: Progress in Nonlinear Differential Equations and Their Applications
ISBN: 978-0-8176-4392-8
Verlag: Birkhauser Boston
One of the key issues related to superfluidity is the existence of vortices. In very recent experiments on Bose–Einstein condensates, vortices have been observed by rotating the trap holding the atoms. In contrast to a classical fluid for which the equilibrium velocity corresponds to solid body rotation, a quantum fluid such as a Bose–Einstein condensate can rotate only through the nucleation of quantized vortices. This monograph is dedicated to the mathematical modelling of these phenomena.
The mathematical tools employed are energy estimates, Gamma convergence, and homogenization techniques. The mathematical analysis is made in the framework of the Gross–Pitaevskii energy. Results are presented and open problems related to recent experiments are explained.
The work can serve as a reference for mathematical researchers and theoretical physicists interested in superfluidity and quantum condensates, and can also complement a graduate seminar in elliptic PDEs or modelling of physical experiments.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Elektromagnetismus Halbleiter- und Supraleiterphysik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Naturwissenschaften Physik Mechanik Kontinuumsmechanik, Strömungslehre
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Strömungslehre
- Naturwissenschaften Physik Thermodynamik Festkörperphysik, Kondensierte Materie
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Naturwissenschaften Physik Mechanik Klassische Mechanik, Newtonsche Mechanik
Weitere Infos & Material
The Physical Experiment and Their Mathematical Modeling.- The Mathematical Setting: A Survey of the Main Theorems.- Two-Dimensional Model for otating Condensate.- Other Trapping Potentials.- High-Velocity and Quantam Hall Regime.- Three-Dimensional Rotating Condensate.- Superfluid Flow Around an Obstacle.- Further Open Problems.