E-Book, Englisch, 349 Seiten, eBook
Reihe: Trends in Mathematics
Agarwal / Dragomir / Jleli Advances in Mathematical Inequalities and Applications
1. Auflage 2018
ISBN: 978-981-13-3013-1
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 349 Seiten, eBook
Reihe: Trends in Mathematics
ISBN: 978-981-13-3013-1
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Chapter 1. Inequalities for the Generalized k-g-Fractional Integrals in Terms of Double Integral Means.- Chapter 2. Fixed Point Approach to Solution Existence of Differential Equations.- Chapter 3. Lyapunov Inequalities for Some Differential Equations with Integral Type Boundary Conditions.- Chapter 4. A New Class of Generalized Convex Functions and Integral Inequalities.- Chapter 5 . Redheffer Type Inequalities for the Fox-Wright Functions.- Chapter 6. Relations of the Extended Voigt Function with other Families of Polynomials and Numbers.- Chapter 7 . Nonlinear Dynamical Model for DNA.- Chapter 8. A Variety of Nonlinear retarded Integral Inequalities of Gronwall-type and their Applications.- Chapter 9 . On the Integral Inequalities for Riemann–Liouville and Conformable Fractional Integrals.- Chapter 10. Weighted Integral Inequalities in Terms of Omega–Fractional Integro-Differentiation.- Chapter 11. On Sherman Method to Deriving Inequalities for Some Classes of Functions Related to Convexity.- Chapter 12. Divisibility of Class Numbers of Quadratic Fields: Qualitative Aspect.- Chapter 13. Some Identities on Derangement and Degenerate Derangement Polynomials.- Chapter 14. Some Perturbed Ostrowski Type Inequalities for Twice Differentiable Functions.- Chapter 15. Comprehensive Inequalities and Equations Specified by the Mittag–Leffler Functions and Fractional Calculus in the Complex Plane.- Chapter 16. Novel Results on Hermite–Hadamard Kind Inequalities for Convex Functions by Means of (k; r)-Fractional Integral Operators.- Chapter 17. A Family of Integral Inequalities on the Interval [1; 1].- Chapter 18 . A Generalization of Cauchy–Bunyakovsky Integral Inequality via Means with Max and Min Values.