Aifaoui / Affi / Abbes | Design and Modeling of Mechanical Systems - IV | E-Book | www.sack.de
E-Book

E-Book, Englisch, 978 Seiten

Reihe: Lecture Notes in Mechanical Engineering

Aifaoui / Affi / Abbes Design and Modeling of Mechanical Systems - IV

Proceedings of the 8th Conference on Design and Modeling of Mechanical Systems, CMSM'2019, March 18-20, Hammamet, Tunisia
1. Auflage 2020
ISBN: 978-3-030-27146-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the 8th Conference on Design and Modeling of Mechanical Systems, CMSM'2019, March 18-20, Hammamet, Tunisia

E-Book, Englisch, 978 Seiten

Reihe: Lecture Notes in Mechanical Engineering

ISBN: 978-3-030-27146-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book offers a collection of original peer-reviewed contributions presented at the 8th International Congress on Design and Modeling of Mechanical Systems (CMSM'2019), held in Hammamet, Tunisia, from the 18th to the 20th of March 2019. It reports on research, innovative industrial applications and case studies concerning mechanical systems and related to modeling and analysis of materials and structures, multiphysics methods, nonlinear dynamics, fluid structure interaction and vibroacoustics, design and manufacturing engineering. Continuing on the tradition of the previous editions, these proceedings offers a broad overview of the state-of-the art in the field and a useful resource for academic and industry specialists active in the field of design and modeling of mechanical systems. CMSM'2019 was jointly organized by two leading Tunisian research laboratories: the Mechanical Engineering Laboratory of the National Engineering School of Monastir, University of Monastir and the Mechanical, Modeling and Manufacturing Laboratory of the National Engineering School of Sfax, University of Sfax.

Aifaoui / Affi / Abbes Design and Modeling of Mechanical Systems - IV jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;From Assembly Planning to Secondary Assembly’s Lines Identification;18
3.1;Abstract;18
3.2;1 Introduction;18
3.3;2 Proposed Approach;20
3.3.1;2.1 Illustrative Mechanism;20
3.3.2;2.2 CAD Data;21
3.3.3;2.3 Assembly Plan Generation;23
3.4;3 Data Implementation;26
3.5;4 Conclusion and Future Work;27
3.6;References;28
4;CAD Tolerancing Integration: A Tool for Optimal Tolerance Allocation;29
4.1;Abstract;29
4.2;1 Introduction;29
4.2.1;1.1 Literature Review;30
4.2.2;1.2 Synthesis and Research Objectives;30
4.3;2 Proposed Approach;31
4.4;3 Case Study;32
4.4.1;3.1 Studied Example;32
4.4.2;3.2 Implementation of Proposed Model and Compared Approaches;33
4.5;4 Results and Discussion;36
4.5.1;4.1 Transfer and Tolerance Results;36
4.5.2;4.2 DCC and Tolerance Results;36
4.5.3;4.3 Cost Results;37
4.6;5 Conclusion;38
4.7;References;38
5;A Computer Aided Tolerancing (CAT) Tool of Non-rigid Cylindrical Parts Assemblies;40
5.1;Abstract;40
5.2;1 Introduction;40
5.3;2 State of the Art;41
5.3.1;2.1 Tolerance Analysis Approaches of Rigid and Non-rigid Parts Assemblies;41
5.4;3 The Main Steps of the Developed Tolerance Analysis Model;41
5.4.1;3.1 Extraction of CAD Data;42
5.4.2;3.2 Modeling of Realistic Cylindrical Components with Defects;42
5.4.3;3.3 Modeling of the CAD Assembly with Realistic Parts;44
5.4.4;3.4 Control of the FR: Tolerances Analysis;46
5.5;4 Case Study;46
5.6;5 Conclusion;49
5.7;References;49
6;Why and How to Move from SPC (Statistical Process Control) to APC (Automated Process Control);50
6.1;Abstract;50
6.2;1 Introduction;50
6.3;2 The Challenges of Process Control in Mechanical Production;51
6.4;3 Optimum Control from a Single Part;52
6.5;4 Multi-criteria Control;54
6.6;5 APC: A Dissociation Between Conformity and Control;55
6.7;6 Conclusion;56
6.8;References;56
7;Proposal of a New Based Scenarios Eco-Manufacturing Methodology on CAD Phase;58
7.1;Abstract;58
7.2;1 1 Introduction;58
7.3;2 2 State of Art;59
7.4;3 3 Proposed Approach;60
7.5;4 4 Case Study;61
7.6;5 5 Conclusion;62
7.7;References;63
8;Experimental Study of Vehicle Noise and Traffic Pollution;64
8.1;Abstract;64
8.2;1 1 Introduction;64
8.3;2 2 Methodology and Experimental Procedure;65
8.4;3 3 Measurements Results and Discussion;67
8.4.1;3.1 Site 1;67
8.4.2;3.2 Site 2;68
8.4.3;3.3 Site 3;69
8.5;4 4 Conclusion;70
8.6;References;70
8.7;Journal article;70
9;Design of an Electronic Throttle Body Based on a New Knowledge Sharing Engineering Methodology;72
9.1;Abstract;72
9.2;1 Introduction;72
9.3;2 State of the Art;73
9.3.1;2.1 Mechatronic Systems Development Methodologies;73
9.3.2;2.2 Methodologies Based on Collaborative Design and Knowledge Sharing;74
9.4;3 Proposed Methodology;76
9.5;4 Case Study;76
9.6;5 Results and Discussion;78
9.7;6 Conclusions;79
9.8;Acknowledgements;79
9.9;References;79
10;Optimization Design of the Sewing Mechanism Using Multi-criteria Colonial Competitive Method;81
10.1;Abstract;81
10.2;1 1 Introduction;81
10.3;2 2 The NBTTL System;82
10.4;3 3 The NBTTL Mechanical Performances;83
10.4.1;3.1 The Needle Jerk (NJ);83
10.4.2;3.2 The Transmission Angle (TA);84
10.4.3;3.3 The Coupler Traking Error (TE);84
10.5;4 4 Multi-objective Optimization Design of the NBTTL Mechanism;85
10.6;5 5 Results and Discussion;86
10.7;6 6 Conclusion;89
10.8;References;89
11;Investigating the Inline Design Measure in Existing Pressurized Steel Piping Systems;91
11.1;Abstract;91
11.2;1 1 Introduction;91
11.3;2 2 Materials and Methods;92
11.4;3 3 Application, Results and Discussion;94
11.5;4 4 Conclusion;98
11.6;References;98
12;Exploring the Performance of the Inline Technique-Based Water-Hammer Design Strategy in Pressurized Steel Pipe Flows;100
12.1;Abstract;100
12.2;1 1 Introduction;100
12.3;2 2 Materials and Methods;101
12.4;3 3 Application, Results and Discussion;103
12.5;4 4 Conclusion;107
12.6;References;108
13;Investigating the Removal of Hydraulic Cavitation from Pressurized Steel Piping Systems;109
13.1;Abstract;109
13.2;1 1 Introduction;109
13.3;2 2 Materials and Methods;110
13.4;3 3 Application, Results and Discussion;113
13.5;4 4 Conclusion;116
13.6;References;117
14;Flow Velocity Effect on the Hygrothermal Behavior of the Polyester/Glass Fiber Composite;119
14.1;Abstract;119
14.2;1 Introduction;119
14.3;2 Materials and Experimental Methods;120
14.4;3 Modeling and Validation;121
14.5;4 Conclusion;124
14.6;References;125
15;Dynamics of the Flow Field Induced by Multiple Elevated Jets in Crossflow;127
15.1;Abstract;127
15.2;1 1 Introduction;127
15.3;2 2 Experimental Set-up;129
15.4;3 3 Results and Discussion;130
15.5;4 4 Conclusion;134
15.6;References;134
16;Transient Flow Study and Fault Detection in Polymeric Pipelines Inverse-Transient-Based Leak Detection Algorithm;136
16.1;Abstract;136
16.2;1 1 Introduction;136
16.3;2 2 Inverse Analysis Method;137
16.3.1;2.1 Concept;137
16.3.2;2.2 Inverse Transient Analysis;137
16.4;3 3 Mathematical Model;138
16.4.1;3.1 Momentum Equation;138
16.4.2;3.2 Continuity Equation;139
16.4.3;3.3 Leak Modeling;140
16.5;4 4 Numerical Resolution: Method of Characteristics;140
16.5.1;4.1 Finite-Difference Equations;140
16.5.2;4.2 Retarded Strain;140
16.5.3;4.3 Boundary Conditions;141
16.6;5 5 Experimental Setup;142
16.7;6 6 Model Calibration and Adjustment;143
16.7.1;6.1 Wave Velocity Delimitation;143
16.7.2;6.2 Optimization Problem;144
16.8;7 7 Leak Quantification;146
16.8.1;7.1 Numerical to Numerical Calibration;146
16.8.2;7.2 Numerical-Experimental Calibration;147
16.9;8 8 Conclusion;148
16.10;References;149
17;Influence of the Impeller Geometry and the Starting Period on the Hydraulic Performance of a Centrifugal Pump;151
17.1;Abstract;151
17.2;1 Introduction;151
17.3;2 Fundamental Equations;152
17.3.1;2.1 Fluid Governing Equations;152
17.3.2;2.2 Pump Governing Equations;154
17.4;3 Numerical Analysis;156
17.5;4 Results;156
17.5.1;4.1 Pump Impeller Speed and Motor Torque;156
17.5.2;4.2 Steady State Response Analysis;156
17.5.3;4.3 Transient Response Analysis;160
17.6;5 Conclusion;161
17.7;References;161
18;Improvement of Mass Transport at the Surface of an SPR Biosensor Applied in Microfluidics;162
18.1;Abstract;162
18.2;1 1 Introduction ;162
18.3;2 2 Theoretical Consideration;164
18.3.1;2.1 The Navier Stokes Equations;164
18.3.2;2.2 The Binding Reaction;164
18.3.3;2.3 Transport Equation;165
18.3.4;2.4 Magnetostatic Equations;165
18.3.5;2.5 Boundary Condition ;166
18.4;3 3 Results and Discussion;166
18.4.1;3.1 Geometric Configuration;166
18.4.2;3.2 Magnetic Field Effect on the Microfluidic Flow Profile;168
18.4.3;3.3 Magnetic Field Effect on the Kinetic Response;169
18.5;4 4 Conclusion;170
18.6;References;170
19;Assessing the Inline and Branching Techniques in Mitigating Water-Hammer Surge Waves;172
19.1;Abstract;172
19.2;1 Introduction;172
19.3;2 Theory and Methods;174
19.4;3 Application, Results and Discussion;175
19.5;4 Conclusion;179
19.6;References;179
20;A Reliability Based Design Method Evaluation for a Coupled Fluid-Structure System;181
20.1;Abstract;181
20.2;1 1 Introduction;181
20.3;2 2 Vibroacoustic Damped Model;182
20.4;3 3 Resolution Methods;182
20.4.1;3.1 Direct Method;182
20.4.2;3.2 Model Order Reduction Method;183
20.5;4 4 The First Order Reliability Method;185
20.6;5 5 The Reliability Based Design Method Evaluation;185
20.7;6 6 Numerical Simulation;186
20.7.1;6.1 Finite Elements Model;186
20.7.2;6.2 The Reliability Based Design Method Evaluation, Results and Discussion;187
20.8;7 7 Conclusion and Outlook;188
20.9;References;188
21;Effect of Cylindrical Particle Orientation on the Flow and Temperature Distribution;190
21.1;Abstract;190
21.2;1 Introduction;190
21.3;2 Numerical Methodology;191
21.3.1;2.1 Nusselt Number Correlations;192
21.3.2;2.2 Drag Coefficient Correlations;192
21.3.3;2.3 Solution and Simulation Conditions;194
21.4;3 Results and Discussion;194
21.4.1;3.1 Validation Using Spherical Particle;194
21.4.2;3.2 Flow Past a Stationary Non-spherical Particle;195
21.4.3;3.3 Hydrodynamic Behavior of Gas and Particles;196
21.5;4 Conclusion;198
21.6;References;199
22;Experimental Analysis of Electromyography (EMG) Signal for Evaluation of Isometric Muscle Force;200
22.1;Abstract;200
22.2;1 Introduction;200
22.3;2 Materials and Methods;201
22.3.1;2.1 Experimental Materials;201
22.3.2;2.2 EMG Acquisition and Processing;202
22.3.3;2.3 Development Muscle Model;203
22.3.3.1;2.3.1 Dynamic Activation;204
22.3.3.2;2.3.2 Dynamic Contraction;205
22.4;3 Results and Discussion;206
22.5;4 Conclusion;208
22.6;References;208
23;Multiscale Approach from Nanoscale to Macroscale to Identify Orthotropic Properties of Trabecular Bone Based on FEM;210
23.1;Abstract;210
23.2;1 Introduction;210
23.3;2 Method Description;211
23.3.1;2.1 Bone Composition;211
23.3.2;2.2 Multiscale Model of Trabecular Bone;212
23.3.3;2.3 Multiscale Approach;212
23.4;3 Results and Discussion;213
23.4.1;3.1 Microfibril;214
23.4.2;3.2 Fibril;215
23.4.3;3.3 Lamella;216
23.4.4;3.4 Single Trabeculae;217
23.4.5;3.5 Trabecular Network;218
23.5;4 Conclusion;219
23.6;References;219
24;Modeling of a Fatigue Test Performed on a Trans-Tibial Prosthetic Socket Made of Natural Fiber;221
24.1;Abstract;221
24.2;1 1 Introduction;222
24.3;2 2 Cyclic Test of Socket According to ISO 10328;222
24.4;3 3 Theoretical Study;224
24.5;4 4 Electro-Mechanical Analogy;224
24.6;5 5 Identification of Burgers Model Parameters;225
24.7;6 6 Design Optimization of the Test Bench;226
24.7.1;6.1 Determination of the Natural Frequency of the Test Bench Based on the Burgers Model;226
24.7.2;6.2 Possible Solutions to Increase the Natural Frequency of the Test Bench;227
24.7.3;6.3 The Effect of the Reduction of the Equivalent Mass on the Running of the Cyclic Test;228
24.8;7 7 Conclusion;229
24.9;References;229
25;Investigation on the Effect of the Contact-Free Creep Test Loading Conditions on the Human Skin Viscoelastic Parameters;231
25.1;Abstract;231
25.2;1 1 Introduction;231
25.3;2 2 Materials and Methods;232
25.3.1;2.1 Experimental Protocol;232
25.3.2;2.2 Constitutive Law;233
25.3.3;2.3 Finite Elements Model and Inverse Problem;233
25.3.4;2.4 Statistical Analysis;234
25.4;3 3 Results and Discussion;234
25.4.1;3.1 Numerical Results;234
25.4.2;3.2 Statistical Analysis Results;235
25.5;4 4 Conclusion;236
25.6;References;236
26;Effect of Changing Temperature and Wire Cross Section on the Tribological Behavior of the NiTi Alloy;238
26.1;Abstract;238
26.2;1 1 Introduction;238
26.3;2 2 Materials and Methods;239
26.4;3 3 Results and Discussion;240
26.4.1;3.1 Preliminary Evaluation;240
26.4.2;3.2 Tribological Results;242
26.5;4 4 Conclusion;246
26.6;References;246
27;The Simulation of Acoustic Cavitation in the Medical Field;248
27.1;Abstract;248
27.2;1 Introduction;248
27.3;2 Mathematical and Numerical Model;249
27.3.1;2.1 Governing Equations;249
27.3.2;2.2 Rayleigh-Plesset;251
27.3.3;2.3 The VOF-LPT Coupling;251
27.4;3 Results and Discussions;252
27.4.1;3.1 The VOF-LPT-RP Solvers;252
27.4.2;3.2 Test Case Description;253
27.4.3;3.3 Boundary and Operation Conditions;253
27.4.4;3.4 Results;254
27.5;4 Conclusion;255
27.6;References;256
27.7;Journal article;256
27.8;Journal article only by DOI;256
28;Nonlinear Analysis of the Effect of Hydrodynamic Forces on the Stability of an Unbalanced Rigid Rotor;257
28.1;Abstract;257
28.2;1 1 Introduction;257
28.3;2 2 Mathematical Modelling;258
28.4;3 3 Results;260
28.5;4 4 Conclusion;264
28.6;Acknowledgements;265
28.7;References;265
29;Power Losses in a Gearbox Lubricated with Axle Gear Oils;266
29.1;Abstract;266
29.2;1 1 Introduction;267
29.3;2 2 Materials and Methods;268
29.4;3 3 Power Loss Model with C40/A10 Gears;271
29.4.1;3.1 Seals Power Loss;271
29.4.2;3.2 Rolling Bearing Power Loss;272
29.4.3;3.3 No-Load Gears Power Loss;272
29.4.4;3.4 Gears Power Loss;273
29.5;4 4 Results and Discussion;274
29.6;5 5 Conclusion;276
29.7;Acknowledgements;277
29.8;References;277
30;A Low Cost Uncertainties Propagation Study for a Coupled Fluid Structure System;278
30.1;Abstract;278
30.2;1 1 Introduction;278
30.3;2 2 Stochastic Vibroacoustic Damped Model;279
30.4;3 3 Resolution Methods;280
30.4.1;3.1 Direct Method;280
30.4.2;3.2 Model Order Reduction Method;281
30.5;4 4 The Proposed Uncertainty Analysis Method;282
30.6;5 5 Numerical Simulation;283
30.6.1;5.1 Finite Elements Model;283
30.6.2;5.2 Stochastic Response, Results and Discussion;284
30.7;6 6 Conclusion and Outlook;286
30.8;References;286
31;Robust 2D-Spatial Fourier Transform Identification of Wavenumber-Space Characteristics of a Composite Plate;288
31.1;Abstract;288
31.2;1 Introduction;289
31.3;2 Theoretical Backgrounds;290
31.4;3 K-Space Identification of Sandwich Plate Using Experiment-Based 2D-Spatial DFT;290
31.5;4 Conclusion;295
31.6;References;297
32;Physical Only Modes Identification Using the Stochastic Modal Appropriation Algorithm;299
32.1;Abstract;299
32.2;1 Introduction;299
32.3;2 The SMA Algorithm;300
32.4;3 Harmonics Rejection;301
32.5;4 Spurious Modes Rejection;302
32.6;5 Simulation Validation;303
32.6.1;5.1 Harmonics Rejection;304
32.6.2;5.2 Spurious Modes Rejection;304
32.7;6 Conclusion;305
32.8;References;305
33;Comparative Study of Smart Structures Vibrations Under Earthquake Excitations;306
33.1;Abstract;306
33.2;1 1 Introduction;306
33.3;2 2 Classical Active Control Algorithm (LQR);307
33.4;3 3 Methods of the Optimal Position of the Control Systems;308
33.4.1;3.1 The Method of Modal Controllability;308
33.4.2;3.2 Controllability Index;308
33.4.3;3.3 Genetic Algorithm;308
33.5;4 4 Numerical Studies;309
33.5.1;4.1 Validation of the Model Taken;309
33.5.2;4.2 Application of Modal Controllability;309
33.5.3;4.3 Application of Controllability Index;312
33.5.4;4.4 Application of Genetic Algorithm;314
33.6;5 5 Conclusion;315
33.7;References;315
34;The Influence of Process Parameters on Single Point Incremental Forming: Numerical Investigation;317
34.1;Abstract;317
34.2;1 Introduction;317
34.3;2 Constitutive Model;318
34.4;3 FEM Simulation;319
34.5;4 FEM Results;320
34.6;5 Conclusion;324
34.7;References;324
35;Experimental Investigation and Finite Element Modeling on Incremental Forming Process of Aluminum Sheet Alloys;326
35.1;Abstract;326
35.2;1 Introduction;327
35.3;2 Modeling and Simulation;327
35.4;3 Results and Discussion;328
35.5;4 Conclusion;334
35.6;References;334
36;Ductile Fracture Characterization of an IF Steel Tensile Test by Numerical Simulation;335
36.1;Abstract;335
36.2;1 1 Introduction;335
36.3;2 2 Elastic-Plastic Constitutive Equations;336
36.4;3 3 Hill’s Yield Criterion for Orthotropic Materials;336
36.5;4 4 Hardening Laws;337
36.6;5 5 Ductile Fracture;338
36.7;6 6 Damage Evolution;339
36.8;7 7 Finite Element Model;340
36.9;8 8 Conclusions;343
36.10;References;343
37;Predictive Modeling and Optimization of Cutting Parameters During the Turning of Inconel 718 Using Taguchi Method;345
37.1;Abstract;345
37.2;1 1 Introduction;345
37.3;2 2 Problem Definition;346
37.4;3 3 Experimental Setup;346
37.4.1;3.1 Material;346
37.4.2;3.2 Taguchi Method;346
37.5;4 4 Result and Discussion;347
37.5.1;4.1 Signal to Noise Ratio;347
37.5.2;4.2 Main Effects Plot for S/N Ratio;348
37.5.3;4.3 Regression Equation;349
37.6;5 5 Conclusion;350
37.7;Acknowledgements;350
37.8;References;351
38;Effect of Multi-stage Incremental Formatting Strategy (DDDD) on Sheet Thickness and Profile;352
38.1;Abstract;352
38.2;1 Introduction;352
38.3;2 Numerical Simulation;353
38.4;3 Experimental Setup;356
38.5;4 Results and Discussion;357
38.6;5 Conclusion;360
38.7;References;360
39;Human Skills Evaluation to Improve Production Performance: Case of a Company in the Cosmetics Sector;362
39.1;Abstract;362
39.2;1 Introduction;362
39.3;2 Management and Assessment of Knowledge and Skills;363
39.3.1;2.1 Knowledge Management;364
39.3.2;2.2 Knowledge and Skills Assessment;364
39.4;3 Approach and Outcome of the Skills Assessment Survey;365
39.4.1;3.1 Pre-survey;366
39.4.2;3.2 Survey;366
39.4.3;3.3 Post-survey;367
39.5;4 Conclusion;369
39.6;Acknowledgements;369
39.7;References;369
40;Optimization of FDM Manufacturing Parameters of a Biodegradable Thermoplastic (PLA);372
40.1;Abstract;372
40.2;1 1 Introduction;372
40.3;2 2 Materials and Methods;374
40.3.1;2.1 Dynamic Mechanical Analysis of PLA;374
40.3.2;2.2 Design of Experiment Based on Taguchi Method;374
40.4;3 3 Results and Discussion;375
40.4.1;3.1 DMA Test of a PLA;375
40.4.2;3.2 Influence of FDM Process Parameters;375
40.5;4 4 Conclusion;378
40.6;Acknowledgements;379
40.7;References;379
41;Investigation of Delamination Factor in High Speed Milling on Carbon Fiber Reinforced Plastics;380
41.1;Abstract;380
41.2;1 1 Introduction;380
41.3;2 2 Experimental Set Up;381
41.3.1;2.1 Materials and Methodology;381
41.3.2;2.2 Design of Machining Experiments;382
41.4;3 3 Results and Discussions;383
41.4.1;3.1 Entry Delamination;384
41.4.2;3.2 Exit Delamination;388
41.5;4 4 Conclusion;390
41.6;References;391
42;The Effect of High-Speed Milling on Surface Roughness of 42CrMo4 Hardened Steel Using a Ball Nose End-Mill Cutter;392
42.1;Abstract;392
42.2;1 Introduction;392
42.3;2 Experimental Results;393
42.4;3 Interpretations;396
42.5;4 Conclusion;398
42.6;Acknowledgements;398
42.7;References;398
43;Multi-optimization of Stellite 6 Turning Parameters for Better Surface Quality and Higher Productivity Through RSM and Grey Relational Analysis;399
43.1;Abstract;399
43.2;1 1 Introduction;400
43.3;2 2 Experimental Procedure;401
43.3.1;2.1 Equipment and Materials;401
43.3.2;2.2 Design of Experiments;402
43.4;3 3 Effect of Cutting Conditions on Surface Roughness;402
43.5;4 4 Optimization of Cutting Conditions Using Grey Relational Analysis;406
43.6;5 5 Conclusion;407
43.7;References;407
44;Numerical Determination of Cutting Stability Lobes in Orthogonal Milling;409
44.1;Abstract;409
44.2;1 Introduction;409
44.3;2 Approach Description;410
44.4;3 Numerical Cutting;410
44.4.1;3.1 Radial Flexibility;411
44.4.2;3.2 Transverse Flexibility;413
44.4.3;3.3 Combined Flexibility;413
44.5;4 Results Comparison;414
44.6;5 Conclusion;415
44.7;Acknowledgements;415
44.8;References;415
45;Prediction of Forces Components During the Turning Process of Stellite 6 Material Based on Artificial Neural Networks;416
45.1;Abstract;416
45.2;1 1 Introduction;416
45.3;2 2 Experimental Procedure;418
45.4;3 3 Artificial Neural Networks Model;419
45.5;4 4 Conclusion;424
45.6;References;424
46;A Finite Element Procedure for Thermal Buckling Analysis of Functionally Graded Shell Structures;426
46.1;Abstract;426
46.2;1 Introduction;426
46.3;2 Material Properties of FGM Conical Shells;427
46.4;3 Basic Equations of FGM Shell;428
46.4.1;3.1 Kinematics of the Shell Model and Strain Field;428
46.4.2;3.2 Weak Form and Constitutive Relations;428
46.4.3;3.3 Thermal Buckling Problem;429
46.5;4 Results and Discussion;430
46.6;5 Conclusion;432
46.7;References;432
47;Thermal Expansion Behavior of Al 2017 Alloy Matrix Composites Prepared by Stir Casting;434
47.1;Abstract;434
47.2;1 1 Introduction;434
47.3;2 2 Experimental Procedure;435
47.4;3 3 Result and Discussion;437
47.4.1;3.1 Microstructure of Composites;437
47.4.2;3.2 Density of Composites;438
47.4.3;3.3 Thermal Expansion Behavior of Composites;439
47.5;4 4 Conclusion;440
47.6;References;441
48;Material and Geometric Nonlinear Analysis of Ceramic/Metal Functionally Graded Cylindrical Shell;443
48.1;Abstract;443
48.2;1 Introduction;443
48.3;2 Theoretical Formulation;444
48.3.1;2.1 Material Properties of FG Cylindrical Shell;444
48.3.2;2.2 Kinematic Assumptions, Weak Form and Constitutive Relations;445
48.3.3;2.3 Constitutive Relations in Elastoplasticity;446
48.4;3 Finite Element Resolution;446
48.5;4 Numerical Results;447
48.6;5 Conclusion;450
48.7;References;450
49;Buckling Analysis of Carbon Nanotube-Reinforced FG Shells Using an Enhanced Solid-Shell Element;452
49.1;Abstract;452
49.2;1 1 Introduction;452
49.3;2 2 Finite Element Formulation;453
49.3.1;2.1 The Weak Form;453
49.3.2;2.2 Compatible Strains;454
49.3.3;2.3 Enhanced Green Lagrange Strains;454
49.4;3 3 Carbon Nanotube Reinforced Composite Shell;455
49.5;4 4 Numerical Simulations;456
49.6;5 5 Conclusion;458
49.7;References;458
50;Static Analysis of Carbon Nanotube-Reinforced FG Shells Using an Enhanced Solid-Shell Element;460
50.1;Abstract;460
50.2;1 1 Introduction;460
50.3;2 2 Finite Element Formulation;461
50.3.1;2.1 The Weak Form;461
50.3.2;2.2 Compatible Strains;462
50.3.3;2.3 Enhanced Green Lagrange Strains;462
50.4;3 3 Carbon Nanotube Reinforced Composite Shell;463
50.5;4 4 Numerical Simulations;464
50.6;5 5 Conclusion;467
50.7;References;467
51;Effect of the Type of Binder on Thermal and Mechanical Properties of Mortar with Doum Palm Fiber;469
51.1;Abstract;469
51.2;1 1 Introduction;469
51.3;2 2 Experimental Procedure;470
51.3.1;2.1 Materials;470
51.3.1.1;2.1.1 Doum Palm Fiber;470
51.3.1.2;2.1.2 Binder;470
51.3.1.3;2.1.3 Sand;471
51.3.2;2.2 Mixing Procedure and the Preparation of the Composite;471
51.3.3;2.3 Experimental Investigation;472
51.4;3 3 Results and Discussions;472
51.4.1;3.1 Fibers Surface;472
51.4.2;3.2 Mechanical Properties;473
51.4.3;3.3 Thermal Properties;474
51.5;4 4 Conclusion;475
51.6;References;475
52;Numerical Investigation of Reverse Redrawing Process Using a Non Associated Flow Rule;477
52.1;Abstract;477
52.2;1 1 Introduction;477
52.3;2 2 Constitutive Equations;478
52.4;3 3 Numerical Simulations of Reverse Re-drawing Process;480
52.5;4 4 Results and Discussions;481
52.6;5 5 Conclusion;483
52.7;References;483
53;Low Velocity Impact-and-Damage Study of DD13 Sheet Metal;485
53.1;Abstract;485
53.2;1 Introduction;485
53.3;2 Finite Element Simulations;486
53.3.1;2.1 Constitutive Equations;486
53.3.2;2.2 Finite Element Model;489
53.4;3 Simulation Results;490
53.5;4 Conclusion;492
53.6;References;492
54;Mechanical Characterization of Thin Films Using Nanoindentation Technique. a Numerical Study;494
54.1;Abstract;494
54.2;1 Introduction;494
54.3;2 Methods Measuring Elastic-Plastic Thin Film’s Properties;495
54.3.1;2.1 Oliver and Pharr Method;495
54.3.2;2.2 Numerical Methods;496
54.4;3 Identification of the Elastic-Plastic Thin Films Properties Using Three Analytical Models;497
54.4.1;3.1 Identification of the Elastic-Plastic Film Properties Using Jiang, Zhou and Huang Model;497
54.4.2;3.2 Identification of the Elastic-Plastic Film Properties Using Liao, Zhou, Huang and Jiang Model;500
54.4.3;3.3 Identification of the Film Properties Using Ma, Zhou, Long and Lu Model;502
54.5;4 Conclusion;503
54.6;References;503
55;Numerical Study of SPIF Process of Al–Cu Bimetal Sheet Using Finite Element Analysis: Influence of Process Parameters on the Mechanical and Geometrical Responses;504
55.1;Abstract;504
55.2;1 Introduction;505
55.3;2 Numerical Modeling of SPIF;506
55.4;3 Results and Discussion;507
55.4.1;3.1 Forming Force: Comparison Between Experimental and Numerical Results;508
55.4.2;3.2 Effect of the Wall Angle on the Distribution of Final Sheet Thickness and Equivalent Plastic Strain;510
55.5;4 Conclusions;513
55.6;References;514
56;Effect of Multiple Impacts on Thin Leading Edges of Turbine Blade Treated by Laser Shock Peening Process;515
56.1;Abstract;515
56.2;1 Introduction;515
56.3;2 Finite Element Model Investigation of the LSP Treatment;516
56.3.1;2.1 Geometric Model;516
56.3.2;2.2 General Hypotheses of the Study;517
56.3.3;2.3 Material Representative Properties;518
56.3.4;2.4 Boundary Conditions and Loading Induced by LSP Treatment;519
56.3.5;2.5 Principal Calculation Steps;520
56.4;3 Results and Discussions;520
56.5;4 Conclusion;523
56.6;Acknowledgements;523
56.7;References;523
57;Experimental Study of Immiscible Polymer Blends: Morphology and Rheology;524
57.1;Abstract;524
57.2;1 1 Introduction;524
57.3;2 2 Materials and Techniques;525
57.3.1;2.1 Materials;525
57.3.2;2.2 Techniques;525
57.4;3 3 Results and Discussion;526
57.5;4 4 Conclusion;529
57.6;References;529
58;Extension of the Jiles–Atherton Hysteresis Model to Characterize the Magneto-Mechanical Behavior: Experimental and Numerical Investigations for Stator Blanking;531
58.1;Abstract;531
58.2;1 1 Introduction;532
58.3;2 2 Experimental Section;532
58.3.1;2.1 Material and Experimental Set up;532
58.3.2;2.2 Experimental Results;533
58.3.3;2.3 Hysteresis Model;533
58.4;3 3 Numerical Aspect;534
58.4.1;3.1 Finite Element Modelling;534
58.4.2;3.2 Finite Element Results;535
58.5;4 4 Magneto Mechanical Coupling;535
58.5.1;4.1 Coupling Procedure;536
58.5.2;4.2 Coupling Results;537
58.6;5 5 Conclusion;538
58.7;References;539
59;Product Development Process Based on Open Technologies;541
59.1;Abstract;541
59.2;1 Introduction;541
59.3;2 Literature Review of Product Development Process;542
59.3.1;2.1 Fuzzy Front End;543
59.3.2;2.2 Prototyping Phase;544
59.4;3 New Approach of Product Development Process;544
59.4.1;3.1 Opportunity Research;545
59.4.2;3.2 Opportunity Evaluation;545
59.4.3;3.3 Validates Opportunities;546
59.4.4;3.4 Engineering Design;547
59.5;4 The Assumptions Derived from Processes;547
59.6;5 Conclusion and Future Work;547
59.7;References;547
60;Failure Mechanism of Sandwich Panels Under Three-Point Bending;550
60.1;Abstract;550
60.2;1 1 Introduction;550
60.3;2 2 Analytical Analysis;551
60.3.1;2.1 Modified Gibson’s Model;551
60.3.2;2.2 Failure Mode Map;554
60.4;3 3 Experimental and Numerical Procedures;555
60.4.1;3.1 Experimental Procedures;555
60.4.2;3.2 Numerical Simulations;556
60.5;4 4 Results and Discussion;556
60.6;5 5 Conclusion;560
60.7;References;560
61;Analysis on the Dependence of the Fracture Locus on the Pressure and the Lode Angle;562
61.1;Abstract;562
61.2;1 Introduction;563
61.3;2 Ductile Fracture Models;564
61.3.1;2.1 Mae and Wierzbicki [8];564
61.3.2;2.2 Xue and Wierzbicki [9];565
61.3.3;2.3 Damage Evolution;566
61.4;3 Numerical Simulations;566
61.4.1;3.1 Effect of Models Parameters;567
61.4.2;3.2 3D Fracture Locus;570
61.5;4 Conclusion;573
61.6;References;573
62;Finite Element Analysis of Single Point Incremental Forming Process of Metallic Composite Sheet: Application to Titanium-Steel Bimetal Sheet Forming;575
62.1;Abstract;575
62.2;1 Introduction;575
62.3;2 Finite Element Analysis;576
62.3.1;2.1 Sheet Materials and Pyramid Geometry;577
62.3.2;2.2 Description of the FE Model;577
62.4;3 Results and Discussion;578
62.4.1;3.1 Validation of the FE Model;578
62.4.2;3.2 Influence of Layers’ Arrangement and Different Vertical Steps Down on the Variations of Forming Force Versus Time Diagram;579
62.4.3;3.3 The Effect of Vertical Pitch Size on the Peak Magnitude of the Forming Loads Acting on the Punch;581
62.4.4;3.4 Effect of the Vertical Step Down on the Thickness Distribution;581
62.5;4 Conclusion;582
62.6;References;583
63;Bending Fatigue Behavior of Flax and Carbon Fiber Reinforced Epoxy Resin;584
63.1;Abstract;584
63.2;1 Introduction;584
63.3;2 Experimental Procedures;585
63.3.1;2.1 Materials;585
63.3.2;2.2 Bending Tests;585
63.4;3 Results and Discussion;586
63.4.1;3.1 Static Results;586
63.4.2;3.2 Fatigue Results;587
63.5;4 Conclusion;591
63.6;References;591
64;Quasi-static Properties of a Bio-Based Sandwich Structure with an Auxetic Core;593
64.1;Abstract;593
64.2;1 1 Introduction;593
64.3;2 2 Materials and Method;594
64.3.1;2.1 Materials and Manufacturing;594
64.3.2;2.2 Tensile Test;595
64.3.3;2.3 Three-Point Bending Test;596
64.4;3 3 Results and Discussion;597
64.4.1;3.1 Material Properties;597
64.4.2;3.2 Poisson’s Ratio of the Auxetic Structure;598
64.4.3;3.3 Bending Performance of Sandwiches Composites;599
64.5;4 4 Conclusion;601
64.6;References;601
65;Characterization of CrN/CrAlN/Cr2O3 Multilayers Coatings Synthesized by DC Reactive Magnetron Sputtering;603
65.1;Abstract;603
65.2;1 1 Introduction;603
65.3;2 2 Experimental Procedures;605
65.4;3 3 Results and Discussion;606
65.4.1;3.1 Microstructure and Morphology;606
65.4.2;3.2 Mechanical Properties;607
65.4.3;3.3 Coefficient of Friction;609
65.5;4 4 Conclusion;610
65.6;References;610
66;Mechanical Characterization of Composite GRC Under Different Solicitations;612
66.1;Abstract;612
66.2;1 Introduction;612
66.3;2 Mechanical Characterizations;613
66.3.1;2.1 Specimens Preparation;613
66.3.2;2.2 Bending Tests;613
66.3.3;2.3 Compression Tests;614
66.4;3 Results and Discussion;615
66.5;4 Observations;617
66.6;5 Conclusion;618
66.7;Acknowledgements;618
66.8;References;618
67;Model Parameters Identification of Adhesively Bonded Composites Tubes Under Internal Pressure;620
67.1;Abstract;620
67.2;1 Introduction;620
67.3;2 Finite Element Model;621
67.3.1;2.1 Interface Model;621
67.3.2;2.2 Ply Model;623
67.4;3 Parameters Identification;624
67.4.1;3.1 Interface Parameters;624
67.4.2;3.2 Ply Parameters;625
67.4.2.1;3.2.1 [±45°] Specimens;625
67.4.2.2;3.2.2 [±80°] Specimens;626
67.4.2.3;3.2.3 Plasticity Parameters;627
67.5;4 Conclusion;629
67.6;Acknowledgements;629
67.7;References;629
68;Influence of the Nitrided Layers Microstructure on the Fatigue Life Improvements of AISI 4140 Steel;631
68.1;Abstract;631
68.2;1 1 Introduction;631
68.3;2 2 Material and Experimental Procedures;632
68.4;3 3 Results and Discussion;633
68.4.1;3.1 Microstructural Characterization;633
68.4.2;3.2 Work Hardening;634
68.4.3;3.3 Residual Stress;635
68.4.4;3.4 Fatigue Behaviour;636
68.4.5;3.5 Fractographic Analysis of Fracture Surfaces;637
68.5;4 4 Conclusion;639
68.6;References;639
69;Characterization of the Surface Roughness of a GFRP by a 3D Profilometer After Trimming;641
69.1;Abstract;641
69.2;1 1 Introduction;641
69.3;2 2 Response Surface Methodology;642
69.4;3 3 Materials and Methods;642
69.4.1;3.1 Material;642
69.4.2;3.2 Machine and Tool Used;643
69.4.3;3.3 Machining Strategy;643
69.5;4 4 Design of Experiments;644
69.6;5 5 Analysis Method of Area Roughness;645
69.7;6 6 Results and Discussion;646
69.7.1;6.1 Results;646
69.7.2;6.2 Results Study with “Minitab”;647
69.8;7 7 Conclusions and Perspectives;649
69.9;References;649
70;Mechanical Behavior of Titanium Aerospace Alloy: TA6V (TiAl6V4) Obtained Through an Identification Strategy Using CPB06 and Barlat Yield91 Criteria;651
70.1;Abstract;651
70.2;1 Introduction;651
70.3;2 Titanium in Aerospace;652
70.4;3 Titanium Alloys Allotropic Status;652
70.5;4 Identification Model;653
70.6;5 Identification Procedure;654
70.7;6 Results and Discussion;655
70.8;7 Numerical Simulation;657
70.9;8 Conclusion;658
70.10;References;659
71;Development of Sustainable Soft Flooring Material to Reduce Fall Injuries;660
71.1;Abstract;660
71.2;1 1 Introduction;660
71.3;2 2 Methodology;661
71.4;3 3 Energy Calculation for Causing Fracture in Bone;662
71.5;4 4 Result and Discussion;662
71.6;5 5 Conclusion;665
71.7;References;665
72;Comparative Evaluation of Natural Rubber Properties Blended with Almond Shells Powder with and Without Addition of New Bio-binary Accelerator System;667
72.1;Abstract;667
72.2;1 Introduction;667
72.3;2 Materials and Methods;668
72.3.1;2.1 Material;668
72.3.2;2.2 Composites Preparation;668
72.4;3 Experimental Characterization;668
72.4.1;3.1 Crosslinking Density Measurement;668
72.4.2;3.2 Mechanical Properties;669
72.5;4 Results and Discussion;669
72.6;5 Conclusion;671
72.7;Acknowledgements;671
72.8;References;671
73;Corrosive Wear Resistance of TiO2 Coatings by the Electrophoretic Deposition Process;672
73.1;Abstract;672
73.2;1 Introduction;672
73.3;2 Experimental Protocol;673
73.4;3 Results;674
73.5;4 Conclusion;677
73.6;Acknowledgements;677
73.7;References;677
74;Numerical Study of Mechanical Behavior of Agave Fibers Reinforced Composites;678
74.1;Abstract;678
74.2;1 1 Introduction;678
74.3;2 2 Materials and Methods;679
74.3.1;2.1 Published Data;679
74.3.2;2.2 Finite Element Modeling;680
74.4;3 3 Results and Discussion;680
74.4.1;3.1 Macro Scale Modeling, Tensile Test Simulation;680
74.4.2;3.2 Macro Scale Modeling, 3 Points Bending Test Simulation;682
74.4.3;3.3 Meso Scale Modeling, Tensile Test Simulation;682
74.5;4 4 Conclusion;686
74.6;References;686
75;A 3D Numerical Analysis of the Chip Segmentation Mechanism and the Side Burr Formation During the Ti6Al4V Alloy Machining;688
75.1;Abstract;688
75.2;1 1 Introduction;689
75.3;2 2 Numerical Model;690
75.4;3 3 Results and Discussion;692
75.5;4 4 Conclusion;696
75.6;References;697
76;A Modified FSDT Model for Static Analysis of Smart Functionally Graded Shells;698
76.1;Abstract;698
76.2;1 1 Introduction;698
76.3;2 2 Theoretical Formulations;699
76.3.1;2.1 Material Properties of FG Plates;699
76.3.2;2.2 Kinematic Assumptions, Weak Form and Constitutive Relations;699
76.3.3;2.3 Finite Element Approximation;701
76.4;3 3 Numerical Results;702
76.5;4 4 Conclusion;705
76.6;References;705
77;Experimental Investigation of Mechanical Behavior of NiTi Arch Under Cycling Loading and Cathodically Hydrogen Charging;707
77.1;Abstract;707
77.2;1 1 Introduction;707
77.3;2 2 Experimental Procedure;708
77.4;3 3 Experimental Results and Discussion;709
77.4.1;3.1 Effect of Imposed Strain;709
77.4.2;3.2 Effect of Strain Rate;709
77.4.3;3.3 Effect of Hydrogen Charging;711
77.5;4 4 Conclusion;714
77.6;References;714
78;The Effect of Surface Treatment on the Fatigue Behavior of NiTi Alloys;716
78.1;Abstract;716
78.2;1 Introduction;716
78.3;2 Materials and Experimental Procedures;717
78.3.1;2.1 Material of the Study;717
78.3.2;2.2 Experimental Procedures;717
78.4;3 Results and Discussions;718
78.4.1;3.1 Mechanical Properties of NiTi Diablos Specimens;718
78.4.2;3.2 Effect of Hydrogen on Mechanical Behavior of NiTi Specimens;719
78.4.3;3.3 Determination of Fatigue Properties by Self-heating Method;721
78.5;4 Conclusion;723
78.6;References;723
79;Micro-Scale Investigations on Belt-Finishing Wear Mechanisms and Residual Stresses by Scratch Test: Numerical Study;724
79.1;Abstract;724
79.2;1 1 Introduction;724
79.3;2 2 Numerical Study;726
79.3.1;2.1 The Description and the Conditions of the Modeling;726
79.4;3 3 Results and Discussion;728
79.4.1;3.1 Characterization of the Wear Mode;728
79.4.2;3.2 The Effect of Scratching Velocity on the Residual Stresses;730
79.4.3;3.3 The Effect of Friction Coefficient on the Residual Stresses;730
79.5;4 4 Conclusion;731
79.6;References;732
80;Micromechanical Modeling and Simulation of the Elastoplastic Behavior of Composite Materials;733
80.1;Abstract;733
80.2;1 1 Introduction;733
80.3;2 2 Double Inclusion Model;735
80.4;3 3 Incremental Formulation of Homogenization Model;736
80.5;4 4 Elasto-Plastic Tangent Operator;737
80.6;5 5 Incremental Algorithm Steps;738
80.7;6 6 Numerical Results and Discussion;738
80.8;7 7 Conclusion;740
80.9;References;740
81;Impact of Injection Parameters on Gloss Properties of Grained Polypropylene Parts;742
81.1;Abstract;742
81.2;1 1 Introduction;742
81.3;2 2 Materials and Techniques;743
81.3.1;2.1 Materials;743
81.3.2;2.2 Techniques;744
81.3.2.1;2.2.1 Polymer Processing;744
81.3.2.2;2.2.2 Colorometric Properties;745
81.4;3 3 Results and Discussion;745
81.5;4 4 Conclusion;747
81.6;References;747
82;Dynamic Calibration Method for Copper Crusher Gauges Based on Split Hopkinson Pressure Bars Technique and Finite Element Modeling;749
82.1;Abstract;749
82.2;1 Introduction;749
82.3;2 Split Hopkinson Pressure Bars Apparatus and Data Analysis;751
82.4;3 Modeling of the Crusher Gauge Material;753
82.5;4 Experimental Dynamic Test Results;754
82.6;5 Numerical Modeling;756
82.7;6 Results and Discussion;757
82.8;7 Conclusion;758
82.9;References;758
83;Improvement of the Quality of Aeronautical Products Stelia Tunisia;760
83.1;Abstract;760
83.2;1 1 Introduction;760
83.3;2 2 Diagnosis;760
83.3.1;2.1 Assembly Process of Lower Fuselage 13–14;760
83.3.2;2.2 Diagnosis and Action Plan;762
83.4;3 3 Improvement Actions;763
83.4.1;3.1 Constitution of the Work Team;763
83.4.2;3.2 Choice of the Pilot Line;763
83.4.3;3.3 Creating Process Flow Chart;763
83.4.4;3.4 Creating the Monitoring Plan;763
83.4.5;3.5 FMECA Process;765
83.4.6;3.6 Checkpoints;765
83.4.7;3.7 Target Operation Method;766
83.4.8;3.8 Points Display Method;766
83.4.9;3.9 The 5S Method;768
83.5;4 4 Conclusion;768
83.6;References;768
84;Investigation of the Effects of the Pre-hole Geometrical Parameters on the Countersinking Process;769
84.1;Abstract;769
84.2;1 Introduction;769
84.3;2 Material Behavior;770
84.4;3 Parameters;771
84.5;4 FE Model;772
84.6;5 Experiments Tools;772
84.7;6 Results and Discussions;773
84.8;7 Effects of the Parameters on the Punch Load;773
84.9;8 Effects of the Parameters on the Countersunk Hole Shape;773
84.10;9 Experimental Final Shape;776
84.11;10 Conclusion;777
84.12;References;777
85;Meshfree Modeling of 3D-Shell Structures Using the Modified First Order Shear Deformation Theory;779
85.1;Abstract;779
85.2;1 1 Introduction;779
85.3;2 2 The Modified First Order Shear Deformation Theory Kinematic Assumptions;780
85.3.1;2.1 Displacement Field and Strains of the Shell Model;780
85.3.2;2.2 The Meshfree Global Weak Form;781
85.3.3;2.3 The RPIM Using for the Meshfree Approximation of the Modified First Order Shear Deformation Theory;782
85.4;3 3 Numerical Example and Results;782
85.5;4 4 Conclusion;785
85.6;References;785
86;An ABAQUS Implementation of a Solid-Shell Element: Application to Low Velocity Impact;787
86.1;Abstract;787
86.2;1 1 Introduction;787
86.3;2 2 Finite Element Formulation;788
86.3.1;2.1 Assumed Natural Strain Method;789
86.3.2;2.2 Enhanced Assumed Strain Method;789
86.3.3;2.3 Finite Element Resolution;789
86.4;3 3 Elastoplastic Constitutive Equations;790
86.5;4 4 Numerical Results;791
86.6;5 5 Conclusion;793
86.7;References;793
87;Forced Vibration Analysis of Functionally Graded Carbon Nanotubes-Reinforced Composite Plates with Finite Element Strategy;795
87.1;Abstract;795
87.2;1 1 Introduction;795
87.3;2 2 Finite Element Strategy;796
87.3.1;2.1 Parameterization of the Geometry and Deformations;796
87.3.2;2.2 Material Properties of FG-CNTRC Plates;798
87.4;3 3 Forced Vibration Problem;799
87.5;4 4 Results and Discussion;800
87.6;5 5 Conclusions;801
87.7;References;801
88;Evolution of Mean Velocity and Temperature Field of Variable Density Turbulent Rectangular Jet;803
88.1;Abstract;803
88.2;1 1 Introduction;803
88.3;2 2 Computational Procedure;804
88.3.1;2.1 Governing Equations;804
88.3.2;2.2 Flow Configuration and Boundary Conditions;805
88.3.3;2.3 Numerical Method;806
88.4;3 3 Results and Discussion;806
88.4.1;3.1 Centerline Velocity;806
88.4.2;3.2 Centerline Turbulent Intensity;809
88.4.3;3.3 Dynamic Half-Width;809
88.5;4 4 Conclusion;810
88.6;References;810
89;Enhanced Efficiency of InGaN/GaN MQW Solar Cell by Applying Stress;812
89.1;Abstract;812
89.2;1 1 Introduction;812
89.3;2 2 Numerical Method;813
89.3.1;2.1 Self-consistent Model;813
89.3.2;2.2 Electrical Parameters of the InxGa1?XN/GaN MQW Solar Cell;815
89.4;3 3 Results and Discussion;815
89.4.1;3.1 Description of the Model;815
89.5;4 4 Conclusion;819
89.6;References;819
90;Analysing 2D Elastic and Elastoplastic Problems with the Element Free Galerkin Method;821
90.1;Abstract;821
90.2;1 1 Introduction;821
90.3;2 2 Moving Least Square (MLS) Approximation;822
90.4;3 3 Imposition of Boundary Conditions;824
90.5;4 4 Numerical Integration;824
90.6;5 5 2D Linear Elasticity by MLS;824
90.6.1;5.1 Two-Dimensional Plate;824
90.6.2;5.2 Timoshenko Beam;826
90.7;6 6 2D Elastoplasticity by MLS;828
90.7.1;6.1 MLS Discretization and Explicit Scheme;828
90.7.2;6.2 Numerical Examples and Discussions;828
90.8;7 7 Conclusions;830
90.9;References;830
91;Finite-Element Determination of the Equivalent Thermal Conductivity of Hollow Blocks Masonry Wall;832
91.1;Abstract;832
91.2;1 1 Introduction;832
91.3;2 2 Numerical Study;833
91.3.1;2.1 Geometry and Modeling;833
91.3.2;2.2 Mesh Generation;834
91.3.3;2.3 Material Properties of the Constituents;835
91.3.4;2.4 Boundary Conditions;835
91.3.5;2.5 Heat Transfer in Hollow Blocks;835
91.4;3 3 Results and Discussions;836
91.4.1;3.1 Effect of Radiation;836
91.4.2;3.2 Resulting Effective Thermal Conductivity;838
91.5;4 4 Conclusion;838
91.6;References;839
92;Formulation of the Dynamic Stiffness Matrix of Prestressed Cross-Ply Laminated Circular Cylin-Drical Shell Subjected to Distributed Loads;840
92.1;Abstract;840
92.2;1 Introduction;840
92.3;2 Geometry;841
92.4;3 Kinematic Assumptions;842
92.5;4 Lamina Constitutive Relations;842
92.6;5 Behaviour Equations of Composite Shell;842
92.7;6 The Dynamic Equilibrium Equations;843
92.8;7 Dynamic Stiffness Relation of Thick Laminated Prestressed Cylindrical Shells Subjected to Distributed Loads;844
92.8.1;7.1 Dynamic Transfer Relation and Sate Vector;844
92.8.2;7.2 Dynamic Stiffness Relation of Presressed Composite Shell;845
92.9;8 Numerical Validation;845
92.9.1;8.1 A Cross-Ply Laminated Prestressed Cylindrical Shell;845
92.9.2;8.2 Distributed Radial Load;846
92.10;9 Conclusion;848
92.11;Appendix A;848
92.12;Appendix B;848
92.13;References;849
93;Finite Element Modelling of the Functionally Graded Shells Mechanical Behavior;850
93.1;Abstract;850
93.2;1 Introduction;850
93.3;2 Material;851
93.4;3 Constitutive Equations;852
93.5;4 Numerical Results;854
93.5.1;4.1 Benchmark Tests;854
93.5.2;4.2 Square Plate Under Doubly Sinusoidal Load;855
93.6;5 Conclusion;857
93.7;References;857
94;Design and Modeling of a Mechatronic Power System of an Electric Vehicle;859
94.1;Abstract;859
94.2;1 Introduction;859
94.3;2 Description of the Mathematical Model;860
94.4;3 Modeling of the Battery with Modelica;862
94.5;4 Simulation Results;864
94.6;5 Parametric Study of the Energy Consumption of the Battery with ModelCenter;865
94.7;6 Conclusion;868
94.8;References;869
95;Sizing Models and Performance Analysis of Waste Heat Recovery Organic Rankine Cycle System for Internal Combustion Engine;870
95.1;Abstract;870
95.2;1 Introduction;871
95.3;2 2 Mathematical Model;873
95.3.1;2.1 Heat Exchanger;873
95.3.2;2.2 Expander-Generators;873
95.3.3;2.3 Motor-Pump;874
95.3.4;2.4 Modeling the Complete ORC System;876
95.4;3 Results and Discussion;876
95.5;4 Conclusion;882
95.6;References;882
96;Entropy Generation Minimization Concept Evaluating Mixing Efficiency Through, Variable Density, Isothermal, Free Turbulent Jet;883
96.1;Abstract;883
96.2;1 Introduction;884
96.3;2 Mathematical Model;885
96.3.1;2.1 First-Order K-? Turbulence Model;886
96.3.2;2.2 Reynolds Tensor;886
96.3.3;2.3 Equation of State;887
96.3.4;2.4 Entropy Generation Rate;887
96.4;3 Boundary Conditions;888
96.5;4 Numerical Procedure;888
96.6;5 Results and Discussion;889
96.7;6 Conclusion;897
96.8;References;897
97;Soft Underwater Robots Imitating Manta Actuated by Dielectric-Elastomer Minimum-Energy Structures;899
97.1;Abstract;899
97.2;1 1 Introduction;899
97.3;2 2 Swimming Method Classification;901
97.4;3 3 Actuator and Robot Structure;902
97.4.1;3.1 Actuator Structure;902
97.4.2;3.2 Robot Structure;903
97.5;4 4 Measurement Results;905
97.5.1;4.1 Actuator;905
97.5.2;4.2 Robot;905
97.6;5 5 Conclusion;906
97.7;Acknowledgements;907
97.8;References;907
98;A Novel in-Pipe Robot Design with Helical Drive;909
98.1;Abstract;909
98.2;1 1 Introduction;909
98.3;2 2 The Design Concept;910
98.4;3 3 Advance Speed;911
98.4.1;3.1 Nomenclature;911
98.4.2;3.2 Robot in a Straight Pipe;911
98.4.3;3.3 Robot in Pipe Bend;912
98.4.4;3.4 Problem of the Robot in a Bend;913
98.5;4 4 The New Design;914
98.6;5 5 Expression of the Advance Speed in a Bend;916
98.7;6 6 Simulation;917
98.8;7 7 Conclusions;917
98.9;References;917
99;Cable-Driven Parallel Robot (Eight Cables): Motors Command in Position and in Velocity;919
99.1;Abstract;919
99.2;1 1 Introduction;919
99.3;2 2 Notations and Kinematic Modeling;920
99.4;3 3 Point-to-Point Motion;922
99.4.1;3.1 Method;922
99.4.2;3.2 Experimental Results;923
99.5;4 4 Conclusions;925
99.6;References;925
100;Bio-Inspired CPG Based Locomotion for Humanoid Robot Application;927
100.1;Abstract;927
100.2;1 Introduction;927
100.3;2 Central Pattern Generator;928
100.4;3 Problem Formulation;929
100.5;4 ZMP Formulation;932
100.6;5 Conclusion;934
100.7;References;934
101;Analysis and Modeling of a Variable Capacity and an Accelerometer Using MEMS-RF Technology;936
101.1;Abstract;936
101.2;1 1 Introduction;936
101.3;2 2 Mechanical and Electrical Characteristic;937
101.3.1;2.1 Mecancials Properties;937
101.3.2;2.2 Electricals Properties;941
101.4;3 3 Modeling of the Proposed Varactor;941
101.5;4 4 Modeling of the Proposed Accelerometer;944
101.6;5 5 Conclusion;947
101.7;Reference;947
102;Co-simulation Study of a Two Wheeled Vehicle Equipped with an ABS System;948
102.1;Abstract;948
102.2;1 Introduction;948
102.3;2 Multibody Model of a Two Wheeled Vehicle;949
102.4;3 Anti-lock Braking System (ABS);949
102.4.1;3.1 Braking Dynamics and ABS Principle;949
102.4.2;3.2 ABS Controller;950
102.5;4 Co-Simulation ADAMS/Simulink;951
102.6;5 Simulation and Results;951
102.6.1;5.1 Simulation on a Dry Road;952
102.6.2;5.2 Simulation on a Wet Road;954
102.7;6 Conclusion and Perspectives;956
102.8;References;956
103;Optimization of a Flexible Multibody System Design Variables Using Genetic Algorithm;957
103.1;Abstract;957
103.2;1 1 Introduction;957
103.3;2 2 Modeling the Mechanism;958
103.4;3 3 Identification Approach;960
103.4.1;3.1 Initial Population Choice;961
103.4.2;3.2 Fitness Function;961
103.5;4 4 Simulations and Results;961
103.5.1;4.1 Effects of Generation Number;962
103.5.2;4.2 Effects of Population Size;963
103.5.3;4.3 Effects of Crossover and Mutation Probabilities;966
103.6;5 5 Conclusion;968
103.7;References;969
104;Water-Hammer Control in Pressurized Pipe Flow Using Dual (LDPE/LDPE) Inline Plastic Sub Short-Sections;970
104.1;Abstract;970
104.2;1 1 Introduction;970
104.3;2 2 Materials and Methods;971
104.4;3 3 Applications, Results and Discussion;974
104.5;4 4 Conclusion;977
104.6;References;977



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.