Buch, Englisch, 603 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 1170 g
An Introduction to Dynamical Systems
Buch, Englisch, 603 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 1170 g
Reihe: Textbooks in Mathematical Sciences
ISBN: 978-0-387-94677-1
Verlag: Springer
Chaos: An Introduction to Dynamical Systems, was developed and class-tested by a distinguished team of authors at two universities through their teaching of courses based on the material. Intended for courses in nonlinear dynamics offered either in Mathematics or Physics, the text requires only calculus, differential equations, and linear algebra as prerequisites. Along with discussions of the major topics, including discrete dynamical systems, chaos, fractals, nonlinear differential equations and bifurcations, the text also includes Lab Visits, short reports that illustrate relevant concepts from the physical, chemical and biological sciences. There are Computer Experiments throughout the text that present opportunities to explore dynamics through computer simulations, designed to be used with any software package. And each chapter ends with a Challenge, which provides students a tour through an advanced topic in the form of an extended exercise.
Zielgruppe
Lower undergraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Computeralgebra
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik Mathematik Geometrie Dynamische Systeme
Weitere Infos & Material
One-Dimensional Maps.- Two-Dimensional Maps.- Chaos.- Fractals.- Chaos in Two-Dimensional Maps.- Chaotic Attractors.- Differential Equations.- Periodic Orbits and Limit Sets.- Chaos in Differential Equations.- Stable Manifolds and Crises.- Bifurcations.- Cascades.- State Reconstruction from Data.