Buch, Englisch, Band 11, 275 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 376 g
Buch, Englisch, Band 11, 275 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 376 g
Reihe: Institute of Mathematical Statistics Textbooks
ISBN: 978-1-108-70374-1
Verlag: Cambridge University Press
Meaningful use of advanced Bayesian methods requires a good understanding of the fundamentals. This engaging book explains the ideas that underpin the construction and analysis of Bayesian models, with particular focus on computational methods and schemes. The unique features of the text are the extensive discussion of available software packages combined with a brief but complete and mathematically rigorous introduction to Bayesian inference. The text introduces Monte Carlo methods, Markov chain Monte Carlo methods, and Bayesian software, with additional material on model validation and comparison, transdimensional MCMC, and conditionally Gaussian models. The inclusion of problems makes the book suitable as a textbook for a first graduate-level course in Bayesian computation with a focus on Monte Carlo methods. The extensive discussion of Bayesian software - R/R-INLA, OpenBUGS, JAGS, STAN, and BayesX - makes it useful also for researchers and graduate students from beyond statistics.
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
1. Bayesian inference; 2. Representation of prior information; 3. Bayesian inference in basic problems; 4. Inference by Monte Carlo methods; 5. Model assessment; 6. Markov chain Monte Carlo methods; 7. Model selection and transdimensional MCMC; 8. Methods based on analytic approximations; 9. Software.