Anderson / McGreevy / Bilheux | Neutron Imaging and Applications | E-Book | www.sack.de
E-Book

E-Book, Englisch, 341 Seiten

Reihe: Neutron Scattering Applications and Techniques

Anderson / McGreevy / Bilheux Neutron Imaging and Applications

A Reference for the Imaging Community
1. Auflage 2009
ISBN: 978-0-387-78693-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Reference for the Imaging Community

E-Book, Englisch, 341 Seiten

Reihe: Neutron Scattering Applications and Techniques

ISBN: 978-0-387-78693-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Neutron Imaging and Applications offers an introduction to the basics of neutron beam production in addition to the wide scope of techniques that enhance imaging application capabilities. An instructional overview of neutron sources, detectors, optics and spin-filters allows readers to delve more deeply into the discussions of radiography, tomography and prospective applications available in neutron holography techniques. A section devoted to current applications describes imaging single grains in polycrystalline materials, neutron imaging of geological materials and other materials science and engineering areas. Coverage of thermal neutron imaging of biological tissues, plant physiology, Homeland Security and contraband detection explore the future prospects of this cutting-edge research. Written by key experts in the field, researchers and engineers involved with imaging technologies will find Neutron Imaging and Applications a valuable reference.

Anderson / McGreevy / Bilheux Neutron Imaging and Applications jetzt bestellen!

Weitere Infos & Material


1;Neutron Imaging and Applications;2
1.1;Preface;6
1.2;Contents;13
1.3;Contributors;15
2;Section A;17
2.1;Introduction to the Neutron;18
2.1.1;1.1 Introduction;18
2.1.2;1.2 Interactions with Matter and Cross Sections;20
2.1.3;References;26
2.2;Neutron Sources and Facilities;28
2.2.1;2.1 Introduction;28
2.2.2;2.2 Neutron Production;30
2.2.2.1;2.2.1 Reactors;30
2.2.2.2;2.2.2 Proton Accelerator-Based Sources;30
2.2.3;2.3 Moderation Mechanisms for Reactors and Spallation Sources;36
2.2.3.1;2.3.1 Reactor Neutron Sources;36
2.2.3.2;2.3.2 Pulsed Spallation Neutron Sources;37
2.2.4;2.4 Comparison of Source Types;41
2.2.5;2.5 Neutron Facilities;42
2.2.6;2.6 Smaller Neutron Sources for Imaging and Other Applications;42
2.2.7;References;44
2.3;Neutron Optics;46
2.3.1;3.1 Introduction;46
2.3.2;3.2 Source Optics;47
2.3.3;3.3 Reflection Optics: Neutron Guides;48
2.3.4;3.4 Diffraction Optics;51
2.3.5;3.5 Refraction Optics;55
2.3.6;3.6 Polarisation Optics;55
2.3.7;References;60
2.4;Neutron Detectors for Imaging;61
2.4.1;4.1 Overview of Neutron Converters;61
2.4.2;4.2 Data Acquisition for Continuous and Time-Dependent Applications;63
2.4.3;4.3 Photographic Film Detectors;63
2.4.4;4.4 Scintillator and Storage Phosphor Detectors;65
2.4.5;4.5 Gas Detectors;70
2.4.6;4.6 Solid-State Detectors;72
2.4.7;4.7 Conclusion;74
2.4.8;References;74
3;Section B;78
3.1;Neutron Radiography;79
3.1.1;5.1 Introduction;79
3.1.2;5.2 A History of Neutron Radiography;80
3.1.3;5.3 Basic Principles;81
3.1.3.1;5.3.1 Sources;81
3.1.3.2;5.3.2 Moderation;82
3.1.3.3;5.3.3 Collimation;82
3.1.3.4;5.3.4 Detectors;83
3.1.4;5.4 Image Analysis;84
3.1.5;5.5 Direct Radiographic Method;85
3.1.6;5.6 Indirect Radiographic Method;87
3.1.7;5.7 Track-Etch Method;87
3.1.8;5.8 Electronic Imaging Methods;88
3.1.9;5.9 Nonfilm Imaging Methods;89
3.1.10;5.10 Standards;90
3.1.11;5.11 Conclusions;90
3.1.12;References;91
3.2;Neutron Tomography;93
3.2.1;6.1 Introduction;94
3.2.2;6.2 Geometric Considerations and Spatial Resolution;95
3.2.3;6.3 Mathematical Foundations of (Neutron) Tomography;98
3.2.3.1;6.3.1 Scanning;98
3.2.3.2;6.3.2 Image Reconstruction;102
3.2.4;6.4 Experimental Techniques and Results;106
3.2.4.1;6.4.1 Energy-Dispersive and Bragg-Edge Radiography and Tomography;106
3.2.4.2;6.4.2 Real-Time Radiography;109
3.2.4.3;6.4.3 Phase Contrast, Refraction, and Small-Angle Tomography;109
3.2.4.4;6.4.4 Refraction and Small-Angle Scattering Tomography;112
3.2.5;6.5 Outlook;118
3.2.6;References;118
3.3;Mathematics of Neutron Imaging;121
3.3.1;7.1 Introduction;121
3.3.2;7.2 Neutron Image Formation and Resolution Analysis;124
3.3.2.1;7.2.1 Resolution Modeling;124
3.3.2.2;7.2.2 System Performance Measurement;126
3.3.3;7.3 Volumetric Imaging;129
3.3.3.1;7.3.1 Filtered Backprojection;130
3.3.3.2;7.3.2 Iterative Reconstruction;133
3.3.3.3;7.3.3 Computer Platforms;136
3.3.4;7.4 Conclusions and Application;136
3.3.5;References;138
3.4;Neutron Phase Imaging;140
3.4.1;8.1 Introduction;140
3.4.2;8.2 Principles;141
3.4.2.1;8.2.1 Phase Shift Versus Attenuation;141
3.4.2.2;8.2.2 Phase Tomography;143
3.4.2.2.1;8.2.2.1 Reconstruction from Phase Shift Projections;144
3.4.2.2.2;8.2.2.2 Reconstruction from Phase Gradient Projections;145
3.4.2.2.3;8.2.2.3 Reconstruction from Laplacian Phase Projections;146
3.4.3;8.3 Experimental Methods;147
3.4.3.1;8.3.1 Crystal Interferometer;147
3.4.3.2;8.3.2 Refraction-Based Techniques;150
3.4.3.2.1;8.3.2.1 Crystal Analyzer-Based Techniques;150
3.4.3.2.2;8.3.2.2 Grating Interferometers;151
3.4.3.3;8.3.3 Propagation-Based Techniques;156
3.4.4;8.4 Coherence Requirements;158
3.4.5;References;161
3.5;Thermal Neutron Holography;163
3.5.1;9.1 Introduction;163
3.5.2;9.2 Atomic-Resolution Holography;165
3.5.3;9.3 Neutrons;166
3.5.4;9.4 Neutron Holography and K Lines;167
3.5.5;9.5 Theory;168
3.5.6;9.6 Reconstruction of the Diffraction Patterns from S Wave Scatterers;170
3.5.7;9.7 Inside Source Neutron Holography;171
3.5.8;9.8 Inside Detector Neutron Holography;174
3.5.9;9.9 Holographic Reconstruction from Multiple Incoherent Scatterers;176
3.5.10;9.10 Holography and Poorly Crystallized Proteins;176
3.5.11;9.11 The Future;178
3.5.12;9.12 Concluding Remarks;178
3.5.13;References;178
3.6;Novel Imaging Techniques: Polarized Neutrons and Neutron-Based Magnetic Resonance Imaging;181
3.6.1;10.1 Neutron Spin Polarized Imaging of Magnetic Field;181
3.6.2;10.2 Spin Echo Imaging;185
3.6.3;10.3 Prospects for Neutron-Probed Magnetic Resonance Imaging;191
3.6.4;References;196
4;Section C;198
4.1;Neutron Imaging for the Hydrogen Economy;199
4.1.1;11.1 Introduction;199
4.1.2;11.2 Neutron Imaging of Fuel Cells and Hydrogen Storage Devices;200
4.1.2.1;11.2.1 Neutron Imaging of Fuel Cells;200
4.1.2.2;11.2.2 Neutron Imaging of Hydrogen Storage Devices;202
4.1.2.3;11.2.3 Primary Areas of Applications;204
4.1.2.3.1;11.2.3.1 Efficient Flow Field Design;204
4.1.2.3.2;11.2.3.2 Water Dynamics Through the PEM;204
4.1.2.3.3;11.2.3.3 GDL Characteristics and Water Retention;205
4.1.2.3.4;11.2.3.4 Characterization of Two-Phase Flow Phenomena in the Flow Field;206
4.1.2.3.5;11.2.3.5 Membrane Durability;206
4.1.2.3.6;11.2.3.6 Materials for Hydrogen Storage;207
4.1.3;11.3 Neutron Imaging Facilities and Techniques;207
4.1.3.1;11.3.1 Basic Principles;207
4.1.3.2;11.3.2 Imaging Techniques;208
4.1.3.2.1;11.3.2.1 Phase Imaging and Other Emerging Techniques;209
4.1.4;11.4 Neutron Imaging Facilities for Fuel Cell Research;210
4.1.5;11.5 Examples of PEM Fuel Cell Neutron Imaging;211
4.1.6;11.6 Conclusion;213
4.1.7;References;214
4.2;Material Science and Engineering with Neutron Imaging;216
4.2.1;12.1 Introduction;216
4.2.2;12.2 Phase Change and Transport During Metal Casting;218
4.2.3;12.3 Particulate Materials and Porous Media;222
4.2.4;12.4 Stroboscopic and Dynamic Neutron Imaging;225
4.2.5;12.5 Residual Stress Imaging;228
4.2.6;12.6 Bragg Edge-Based Energy Selective Neutron Imaging;230
4.2.7;References;233
4.3;Novel Neutron Imaging Techniques for Cultural Heritage Objects;235
4.3.1;13.1 Imaging, Neutrons, and Cultural Heritage;236
4.3.2;13.2 Two Neutron Beam Analytical Techniques: Neutron Resonance Capture Analysis and Prompt Gamma-Ray Activation Analysis;241
4.3.2.1;13.2.1 Neutron Resonance Capture Analysis;241
4.3.2.2;13.2.2 Prompt Gamma-Ray Activation Analysis;242
4.3.3;13.3 Combined Prompt Gamma-Ray Activation Analysis Scanning and Neutron Tomography;246
4.3.4;13.4 Imaging with Neutron Resonances;249
4.3.5;13.5 Applications to Cultural Heritage Studies;250
4.3.6;References;256
4.4;Probing the Potential of Neutron Imaging for Biomedical and Biological Applications;259
4.4.1;14.1 Introduction;259
4.4.2;14.2 First Experimental Measurements on Biological Tissues;260
4.4.3;14.3 Neutron Dosimetry: A Short Overview;264
4.4.4;14.4 Recent Trends;264
4.4.5;14.5 Small Particulate Gadolinium Oxide (SPGO) Nanoparticles for Targeted and Nontargeted Contrast Enhancement for Future Biomedical Neutron Imaging Applications;268
4.4.6;14.6 Summary;269
4.4.7;References;269
4.5;Neutron Stimulated Emission Computed Tomography: A New Technique for Spectroscopic Medical Imaging;271
4.5.1;15.1 Introduction and Background;271
4.5.1.1;15.1.1 Principle;273
4.5.1.2;15.1.2 Applications in Medical Imaging;274
4.5.1.2.1;15.1.2.1 Cancer Diagnosis;274
4.5.1.2.2;15.1.2.2 Noninvasive Measurement of Liver Iron and Copper;275
4.5.1.2.3;15.1.2.3 Small Animal Imaging;275
4.5.2;15.2 Imaging Facility and Apparatus;276
4.5.2.1;15.2.1 Neutron Source;277
4.5.2.2;15.2.2 Gamma Detector;278
4.5.2.3;15.2.3 Tomographic Acquisition Gantry;279
4.5.3;15.3 Current Applications;280
4.5.3.1;15.3.1 Experiment 1: Tomographic Acquisition of Multielement Phantom;280
4.5.3.2;15.3.2 Experiment 2: Diagnosis of Iron Overload in Human Liver Phantom;281
4.5.3.3;15.3.3 Experiment 3: Detection of Breast Cancer;284
4.5.4;15.4 Dose Analysis;286
4.5.5;15.5 Summary;287
4.5.6;15.6 Future;288
4.5.7;References;288
4.6;Visualizing Structures of Biological Macromolecules Through Indirect Imaging with Small-Angle Neutron Scattering and Modeling;295
4.6.1;16.1 Introduction;295
4.6.1.1;16.1.1 Theory;296
4.6.1.2;16.1.2 Contrast Variation;297
4.6.1.3;16.1.3 Information Content and Basic Data Analysis;298
4.6.2;16.2 Modeling for Visualization;299
4.6.2.1;16.2.1 Shape Restoration;300
4.6.2.2;16.2.2 Modeling with High-Resolution Structures;301
4.6.3;16.3 Examples;302
4.6.4;16.4 Conclusions;304
4.6.5;References;305
4.7;Neutron Imaging Applied to Plant Physiology;311
4.7.1;17.1 Introduction;311
4.7.2;17.2 Nondestructive Water Observation in Plants and Soils Using Neutron Transmission Imaging Techniques;312
4.7.2.1;17.2.1 Plant Roots Imbedded in Soil;313
4.7.2.2;17.2.2 Observation of Root Development Under Different Soil Conditions;314
4.7.2.3;17.2.3 Neutron Tomography of Root Systems;316
4.7.2.4;17.2.4 The Aboveground Portion of the Plant;317
4.7.3;17.3 Investigation of Wood Samples;319
4.7.4;17.4 Other Agricultural Applications;321
4.7.5;17.5 Concluding Remarks;322
4.7.6;References;322
4.8;Homeland Security and Contraband Detection;324
4.8.1;18.1 Introduction;324
4.8.1.1;18.1.1 Nature of Problem;324
4.8.1.2;18.1.2 Operational Issues;325
4.8.1.3;18.1.3 Practicality;327
4.8.1.4;18.1.4 Special Nuclear Materials;327
4.8.1.5;18.1.5 Explosives;328
4.8.1.6;18.1.6 Others;329
4.8.1.7;18.1.7 Physics of Detection;329
4.8.2;18.2 Representative Technical Approaches;329
4.8.2.1;18.2.1 Pulsed Fast Neutron Analysis;330
4.8.2.2;18.2.2 The ‘‘Nuclear Car Wash’’;332
4.8.2.3;18.2.3 Combined Neutron and Gamma Radiography;332
4.8.2.4;18.2.4 Neutron Resonance Radiography;334
4.8.2.5;18.2.5 Apparatus;336
4.8.2.6;18.2.6 Elemental Maps;339
4.8.3;18.3 Summary and Future Outlook;342
4.8.4;References;342
5;Index;344



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.