Andrews / Demidov | Resonance Energy Transfer | Buch | 978-0-471-98732-1 | sack.de

Buch, Englisch, 488 Seiten, Format (B × H): 160 mm x 236 mm, Gewicht: 812 g

Andrews / Demidov

Resonance Energy Transfer


1. Auflage 1999
ISBN: 978-0-471-98732-1
Verlag: Wiley

Buch, Englisch, 488 Seiten, Format (B × H): 160 mm x 236 mm, Gewicht: 812 g

ISBN: 978-0-471-98732-1
Verlag: Wiley


Die Übertragung elektronischer Energie zwischen Molekülen oder verschiedenen Positionen desselben Moleküls spielt eine wichtige Rolle in der modernen Chemie, der Medizin und der Biophysik. Bisher gab es kein Buch, das Grundprinzipien und Anwendungen dieses Gebietes gleichermaßen umfassend behandelte - eine Lücke, die jetzt geschlossen ist. Theoretische, mechanistische und praxisbezogene Aspekte kommen gleichermaßen zur Sprache. (04/99)

Andrews / Demidov Resonance Energy Transfer jetzt bestellen!

Weitere Infos & Material


1. Resonance energy transfer in proteins; introduction; some basic considerations; a short history of FRET determinations; the components of the Foorster equation; quantum yield; determining spectral overlap; steady state or time-resolved measurements?; resonance energy transfer using intrinsic amino acids; homotransfer between intrinsic probes; heterotransfer; the range of distances determined by resonance energy transfer; precise location of resonance energy transfer probes; properties of probes; labeling specific residues in proteins; resonance energy transfer experiments using lanthanide ions; measurements in radially symmetrical systems; comparison with crystallographic distances; using resonance energy transfer to constrain molecular models; resonance energy transfer with single fluorophores: new wave experiments; intramolecular energy transfer in proteins bound to membranes; green fluorescent protein; resonance energy transfer and biosensors: a new and promising technique; shortcomings; the future of FRET; summary; dedication; acknowledgements; references.

2. Unified theory and radiative and raditionless energy transfer; introduction; background; the basis of the unified theory; spectral features; refraction and dissipation; dynamics of energy transfer between a pair of molecules in a dielectric medium; conclusion; appendix A: Heitler-MA method for analysis of the transition operator;
Appendix B: modified approach to the transition operator; references.

3. Dynamics of radiative transport; introduction; overview of atomic and molecular radiative transport; the Holstein-Biberman equation; multiple scattering representation; stochastic approach; combined radiative and nonradiative transport; conclusion; appendix A: probablitity of emission of a photon between t + dt for an nth generation molecule; appendix B: depolarization factor for radiative transferaccording to classical electrodynamics; references.

4. Orientational aspects in pair energy transfer; introduction;
Kappa-squared and probability, Kappa-squared and anisotropy; notes on the effects of order and motion; acknowledgements; references.

5. Polarization in molecular complexes with incoherent energy transfer; introduction; interaction of light with single molecules or chromophores; bichromophore molecular complexes; trichromophore complexes; multichromophore complexes with C3 symmetry; conclusion; appendix A; appendix B; appendix C; appendix D; references.

6. Theory of coupling in multichromophoric systems; introduction; reactant and product states: LMO model; the origin of coupling matrix elements; paradigmatic results; coulombic coupling; superexchange; interpretation of steady state spectra; calculation of couplings; acknowledgements; references.

7. Exciton annihilation in molecular aggregates; introduction; theory; applications; discussion; acknowledgements; references.

8. Energy transfer and localization: applications to photosynthetic systems; introduction; optical properties of dimers and aggregates; energy and localization in antenna complexes and reaction centers; acknowledgements; references.

9.Excitation energy transfer in photosynthesis; introduction; the structure of light-harvesting complexes; the mechanism of energy transfer and trapping in photosynthesis; dynamics of excitation energy transfer; conclusions; acknowledgements; references.

10. The Fenna-Matthews-Olson protein: a strongly coupled photosynthetic antenna; introduction; steady state spectroscopy;
FMO exciton simulations;
FMO primary processes; epilog and future prospects; acknowledgements; references.

11. Use of a Monte carlo method in the problem of energy migration in molecular complexes; introduction; an illustration of Monte Carlo calculations in the problem of fluorescence decay; energy transfer in CME: major algorithm; applications of monte Carlo simulations; conclusion; acknowledgements; references.

Index


David L. Andrews, School of Chemical Sciences, University of East Anglia, GB. Highly respected and has made major interesting contributions in the field. His works are very deep and illuminating. Professor Andrews has also published in condensed matter QED, though not to the same extent. One of his books has gone to a third edition, and another has been reprinted.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.