Ansal | Recent Advances in Earthquake Geotechnical Engineering and Microzonation | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 1, 367 Seiten

Reihe: Geotechnical, Geological and Earthquake Engineering

Ansal Recent Advances in Earthquake Geotechnical Engineering and Microzonation


1. Auflage 2006
ISBN: 978-1-4020-2528-0
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 1, 367 Seiten

Reihe: Geotechnical, Geological and Earthquake Engineering

ISBN: 978-1-4020-2528-0
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents a comprehensive coverage of the two interrelated and interdisciplinary fields of seismic microzonation and earthquake geotechnical engineering. The introduction and the first chapter by two prominent researchers in the field of earthquake geotechnical engineering are setting the stage for the main theme of the book. The second chapter gives a general overview of the methods for estimating earthquake impact in large urban areas and the importance of the scale in zonation studies. The six following chapters are dealing with the main topics of strong ground motion, site characterization, site effects, liquefaction, and seismic microzonation.

The last three chapters are concerned with geotechnical earthquake engineering, with special emphasis on solid waste landfills and lining systems, and earthquake resistant design of shallow and deep foundation subjected to earthquakes. A CD-ROM containing full-color versions of figures which are printed in black-and-white in the book itself, is also included.

Ansal Recent Advances in Earthquake Geotechnical Engineering and Microzonation jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;PREFACE;7
2;TABLE OF CONTENTS;9
3;INTRODUCTION ROLE OF GEOTECHNICS IN EARTHQUAKE ENGINEERING;14
4;CHAPTER 1 MICROZONATION: DEVELOPMENTS AND APPLICATIONS;16
4.1;1.1. Introduction;16
4.2;1.2. The Structure of Probabilistic Seismic Hazard Analysis;17
4.3;1.3. Developments in Seismic Hazard Analysis;18
4.3.1;1.3.1. SEISMIC SOURCES;19
4.3.2;1.3.2. RECURRENCE RELATIONS;19
4.3.3;1.3.3. ATTENUATION RELATIONS;21
4.3.4;1.3.4. EFFECTS OF LOCAL SOIL CONDITIONS;23
4.3.5;1.3.5. NEHRP AMPLIFICATION FACTORS;26
4.4;1.4. Microzonation for Risk;27
4.5;1.5. Case History;30
4.5.1;1.5.1. BACKGROUND;30
4.5.2;1.5.2. VICTORIA RISK STUDY;31
4.6;1.6. Final Remarks;38
5;CHAPTER 2 THE INFLUENCE OF SCALE ON MICROZONATION AND IMPACT STUDIES;40
5.1;2.1. Part I – Earthquakes and the Impact on Societies;41
5.1.1;2.1.1. EARTHQUAKES IN THE WORLD AND IN EUROPE IN THE XXTH CENTURY;41
5.1.2;2.1.2. THE SOIL EFFECT ON THE CATASTROPHIC EVENTS;44
5.1.3;2.1.3. MITIGATION OF EARTHQUAKE RISK AND PREPAREDNESS;45
5.2;2.2. Part II – Definition of Problems and Techniques;46
5.2.1;2.2.1. SCENARIO STUDIES – GEOGRAPHIC SCALE OF INTERVENTION;46
5.2.2;2.2.2. SOIL INFORMATION;49
5.2.3;2.2.3. SPECTRAL SHAPES;52
5.3;2.3. Part III – Examples for Illustration;54
5.3.1;2.3.1. EXAMPLE 1. STUDIES AT THE COUNTRY LEVEL: PORTUGAL;54
5.3.2;2.3.2. EXAMPLE 2. STUDIES AT THE REGIONAL LEVEL: THE METROPOLITAN AREA OF LISBON (AML);62
5.3.3;2.3.3. EXAMPLE 3. STUDIES AT THE COUNTY LEVEL: THE CASE OF LISBON;69
5.3.4;2.3.4. EXAMPLE 4. STUDIES AT THE BUILDING BLOCK LEVEL;76
5.4;2.4. Final Considerations and Future Developments;78
6;CHAPTER 3 STRONG GROUND MOTION;80
6.1;3.1. Introduction;80
6.2;3.2. Attenuation;80
6.3;3.3. Factors Affecting Earthquake Strong Ground Motions;86
6.3.1;3.3.1. EFFECTS OF THE EARTHQUAKE SOURCE;86
6.3.2;3.3.2. SUBDUCTION ZONE AND SHALLOW CRUSTAL EARTHQUAKES;88
6.3.3;3.3.3. EFFECTS OF DISTANCE;88
6.3.4;3.3.4. EFFECTS OF NEAR SURFACE WAVE PROPOGATION (SITE EFFECTS);89
6.3.5;3.3.5. BASIN RESPONSE EFFECTS;90
6.4;3.4. Simple Earthquake Source Models;90
6.5;3.5. Time Domain Characteristics of Strong Ground Motion;94
6.5.1;3.5.1. MODELLING OF RMS-ACCELERATION;94
6.5.2;3.5.2. DURATION OF THE STRONG GROUND MOTION;96
6.6;3.6. Frequency Domain Characteristics of Strong Ground Motion;97
6.6.1;3.6.1. THEORETICAL MODEL OF FOURIER AMPLITUDE SPECTRUM;98
6.7;3.7. Radiation Pattern and Directivity;101
6.8;3.8. Simulation of Strong Ground Motion;105
6.8.1;3.8.1. STOCHASTIC SIMULATIONS;106
6.8.2;3.8.2. HYBRID SIMULATIONS;111
6.9;3.9. Conclusions;113
7;CHAPTER 4 GEOPHYSICAL AND GEOTECHNICAL INVESTIGATIONS FOR GROUND RESPONSE ANALYSES;114
7.1;4.1. Introduction;114
7.2;4.2. Mechanical Behaviour of Geomaterials;115
7.3;4.3. Laboratory Tests;119
7.3.1;4.3.1. TRIAXIAL TESTS;119
7.3.2;4.3.2. RESONANT COLUMN AND TORSIONAL SHEAR TEST;121
7.4;4.4. Field Tests;124
7.4.1;4.4.1. GEOPHYSICAL TESTS;124
7.4.2;4.4.2. IN SITU LARGE STRAIN TESTS: PRESSURIMETER AND PLATE LOAD TESTS;137
7.4.3;4.4.3. EMPIRICAL CORRELATIONS FROM PENETRATION TESTS;140
7.5;4.5. Case History;142
7.5.1;4.5.1. FIELD TESTS;143
7.5.2;4.5.2. LABORATORY TESTS;144
7.5.3;4.5.3. LABORATORY VS. FIELD TESTS;147
7.5.4;4.5.4. DEFINITION OF SOIL PARAMETERS FOR SEISMIC ANALYSIS;148
7.6;4.6. Conclusions;150
8;CHAPTER 5 SITE EFFECTS;152
8.1;5.1. Introduction;152
8.2;5.2. Basic Physical Concepts and Definitions;153
8.2.1;5.2.1. SITE EFFECTS DUE TO LOW STIFFNESS SURFACE SOIL LAYERS;155
8.3;5.3. Methods to Estimate Site Effects;159
8.3.1;5.3.1. EXPERIMENTAL-EMPIRICAL;159
8.3.2;5.3.2. EMPIRICAL METHODS;163
8.3.3;5.3.3. SEMI-EMPIRICAL METHODS;165
8.3.4;5.3.4. THEORETICAL (NUMERICAL AND ANALYTICAL) METHODS;166
8.3.5;5.3.5. CONCLUDING REMARKS;169
8.4;5.4. Site Effects in Horizontally Layered Soil Deposits;170
8.4.1;5.4.1. 1D SITE EFFECT COMPUTATIONS IN THE CITY OF THESSALONIKI;170
8.4.2;5.4.2. CONCLUSIVE REMARKS;176
8.5;5.5. 2D Phenomena in Ground Response Modelling;177
8.5.1;5.5.1. 2D EXPERIMENTAL AND THEORETICAL STUDIES IN EUROSEISTEST VALLEY;177
8.5.2;5.5.2. 2D EXPERIMENTAL AND THEORETICAL STUDIES IN THESSALONIKI;182
8.5.3;5.5.3. CONCLUSIVE REMARKS;187
8.6;5.6. Site Effects Due to Surface Topography;189
8.6.1;5.6.1. BRIEF LITERATURE REVIEW;189
8.6.2;5.6.2. SEISMIC CODES;191
8.6.3;5.6.3. THEORETICAL STUDIES IN AN EXPERIMENTAL SITE IN GREECE;191
8.6.4;5.6.4. CONCLUSIONS;200
8.7;5.7. Site Effects and Seismic Codes;201
8.7.1;5.7.1. THE CONCEPT OF EUROCODES;202
8.7.2;5.7.2. INTERNATIONAL BUILDING CODE 2000;202
8.7.3;5.7.3. SOIL AND SITE CLASSIFICATION;202
8.7.4;5.7.4. COMPATIBILITY OF DESIGN FORCES;206
8.7.5;5.7.5. SPECTRAL AMPLIFICATION;206
9;CHAPTER 6 EVALUATION OF LIQUEFACTION-INDUCED DEFORMATION OF STRUCTURES;212
9.1;6.1. Introduction;212
9.2;6.2. Design Procedures for Liquefaction;212
9.2.1;6.2.1. CURRENT DESIGN PROCEDURES;212
9.2.2;6.2.2. EFFECT OF THE 1995 KOBE EARTHQUAKE;213
9.2.3;6.2.3. LIQUEFACTION-INDUCED SETTLEMENT DURING THE 1999 KOCAELI EARTHQUAKE;216
9.3;6.3. Studies on Liquefaction-induced Deformation of Structures in Dense Sand or Silty Sand Grounds;219
9.3.1;6.3.1. NEW METHODS FOR THE PREDICTION OF THE OCCURRENCE OF LIQUEFACTION UNDER STRONG SHAKING;219
9.3.2;6.3.2. SOIL DENSITY AND SPT N-VALUE WHICH CAUSE LIQUEFACTION UNDER STRONG SHAKING;220
9.3.3;6.3.3. BEHAVIOUR OF STRUCTURES IN LIQUEFIED DENSE SANDY GROUND;222
9.3.4;6.3.4. BEHAVIOUR OF STRUCTURES IN LIQUEFIED SILTY GROUND;229
9.4;6.4. Evaluation Methods for Liquefaction-induced Deformation of Structures;231
9.4.1;6.4.1. RAFT FOUNDATIONS;231
9.4.2;6.4.2. PILE FOUNDATIONS;233
9.4.3;6.4.3. EMBANKMENTS;235
9.5;6.5. Countermeasures against Liquefaction-induced Damage of Structures;237
9.5.1;6.5.1. CURRENT COUNTERMEASURES;237
9.5.2;6.5.2. RECENT PROBLEMS;237
9.6;6.6. Liquefaction-induced Flow of the Ground;237
9.6.1;6.6.1. CONCEPT OF DESIGN METHOD;237
9.6.2;6.6.2. COUNTERMEASURES AGAINST THE FLOW;242
9.7;6.7. Concluding Remarks;242
10;CHAPTER 7 SEISMIC ZONATION METHODOLOGIES WITH PARTICULAR REFERENCE TO THE ITALIAN SITUATION;244
10.1;7.1. Introduction;244
10.2;7.2. Evaluation of the Expected Input Motion;247
10.2.1;7.2.1. DETERMINISTIC APPROACH;249
10.2.2;7.2.2. STOCHASTIC APPROACH;251
10.2.3;7.2.3. PROBABILISTIC APPROACH;254
10.2.4;7.2.4. DISCUSSION;256
10.3;7.3. Site Effects Evaluation;258
10.4;7.4. Final Remarks;263
11;CHAPTER 8 SEISMIC MICROZONATION: A CASE STUDY;266
11.1;8.1. Introduction;266
11.2;8.2. Regional Seismicity;267
11.3;8.3. Geological and Geotechnical Site Conditions;271
11.4;8.4. Earthquake Characteristics on the Ground Surface;274
11.5;8.5. Seismic Microzonation with Respect to Ground Shaking;277
11.6;8.6. Conclusions;278
12;CHAPTER 9 DYNAMIC ANALYSIS OF SOLID WASTE LANDFILLS AND LINING SYSTEMS;280
12.1;9.1. Introduction;280
12.2;9.2. Performance of Solid Waste Landfills during Earthquakes;280
12.3;9.3. Analysis of Solid Waste Landfills Stability during Earthquakes;281
12.3.1;9.3.1. INTRODUCTION;281
12.3.2;9.3.2. EXPERIMENTAL METHODS;281
12.3.3;9.3.3. MATHEMATICAL METHODS;282
12.3.4;9.3.4. SELECTION OF DESIGN EARTHQUAKES;283
12.3.5;9.3.5. SELECTION OF SOIL PROPERTIES FOR DYNAMIC ANALYSIS;285
12.3.6;9.3.6. SEISMIC RESPONSE ANALYSIS;290
12.3.7;9.3.7. LIQUEFACTION ASSESSMENT;295
12.4;9.4. Monitoring and Safety Control of Landfills;295
12.5;9.5. Safety and Risk Analyses;296
12.6;9.6. Final Remarks;297
13;CHAPTER 10 EARTHQUAKE RESISTANT DESIGN OF SHALLOW FOUNDATIONS;298
13.1;10.1. Introduction;298
13.2;10.2. Aseismic Foundation Design Process;298
13.3;10.3. Evaluation of Seismic Demand;299
13.3.1;10.3.1.FUNDAMENTALS OF SOIL STRUCTURE INTERACTION;299
13.3.2;10.3.2.CODE APPROACH TO SOIL STRUCTURE INTERACTION ANALYSES;301
13.3.3;10.3.3.IMPROVED EVALUATION OF SEISMIC DEMAND;303
13.4;10.4. Bearing Capacity for Shallow Foundations;307
13.4.1;10.4.1.FUNDAMENTAL REQUIREMENT OF CODE APPROACHES;308
13.4.2;10.4.2.THEORETICAL FRAMEWORK FOR THE PSEUDO-STATIC BEARING CAPACITY;309
13.5;10.5. Evaluation of Permanent Displacements;311
13.5.1;10.5.1.FURTHER DEVELOPMENTS: TOWARDS PERFORMANCE BASED DESIGN;312
13.6;10.6. Construction Detailing;313
13.7;10.7. Conclusions;314
14;CHAPTER 11 BEHAVIOUR AND DESIGN OF DEEP FOUNDATION SUBJECTED TO EARTHQUAKES;316
14.1;11.1. Introduction;316
14.2;11.2. Performance of Near-Surface Soils and Pile Foundations during the 1995 Hyogoken-Nambu Earthquake;317
14.2.1;11.2.1.SOIL LIQUEFACTION AND GROUND MOTION;317
14.2.2;11.2.2.CHARACTERISTICS OF PILE FOUNDATIONS OF BUILDINGS;318
14.2.3;11.2.3.PILE DAMAGE FROM DETAILED FIELD INVESTIGATION;320
14.3;11.3. Cyclic and Permanent Ground Displacements during Earthquakes;322
14.3.1;11.3.1.CYCLIC AND PERMANENT SHEAR STRAINS IN LIQUEFIED AND LATERALLY SPREADING GROUND;322
14.3.2;11.3.2.PERMANENT GROUND DISPLACEMENT NEAR WATERFRONT;324
14.4;11.4. Pseudo-Static Analysis for Seismic Design of Pile Foundations;325
14.4.1;11.4.1.INERTIAL AND KINEMATIC FORCES ACTING ON FOUNDATION;325
14.4.2;11.4.2.BEAM-ON-WINKLER-FOUNDATION METHOD;326
14.4.3;11.4.3.NON-LINEAR P-Y SPRING;327
14.4.4;11.4.4.EARTH PRESSURE ACTING EMBEDDED FOUNDATION;328
14.5;11.5. Effects of Cyclic Ground Displacements on Pile Performance;328
14.6;11.6. Effects of Permanent Ground Displacements on Pile Performance;332
14.7;11.7. Conclusions;337
15;REFERENCES;338
16;INDEX;366
17;More eBooks at www.ciando.com;0


CHAPTER 1

MICROZONATION: DEVELOPMENTS AND APPLICATIONS (p.3-4)

W. D. Liam Finn, Kagawa University, Takamatsu, Japan Tuna Onur, Pacific Geoscience Centre, Sidney, BC, Canada Carlos E. Ventura, University of British Columbia, Vancouver BC, Canada


1.1. Introduction

Building codes base seismic design forces on various seismic hazard parameters that describe the intensity of ground shaking during an earthquake. The design parameter is typically acceleration, velocity or spectral acceleration with a specified probability of exceedance. These parameters are mapped on a national scale for a standard ground condition, usually rock or stiff soil. Mapping to such a scale is called macrozonation.

Damage patterns in past earthquakes show that soil conditions at a site may have a major effect on the level of ground shaking. Mapping of seismic hazard at local scales to incorporate the effects of local soil conditions is called microzonation for seismic hazard. The analysis for calculating the probability of exceeding different levels of the mapped ground motion parameter is called seismic hazard analysis. The basic structure of seismic hazard analysis is presented in this chapter and its evolution to the present state of the art will be described.

The presentation is geared to the user, not the analyst. It attempts to give the user a useful level of understanding of how the seismic hazard parameter of the microzonation is determined, what it means, what uncertainties are associated with it and how they are handled in the analysis. Microzonation for seismic hazard has many uses. It can provide input for seismic design, land use management, and estimation of the potential for liquefaction and landslides. It also provides the basis for estimating and mapping the potential damage to buildings. Mapping the losses expected from a particular level of seismic shaking is called microzonation for risk. The presentation of the procedures for microzonation for risk is also geared to the user.

The procedures for estimating losses for a selected probability of exceedance of ground shaking level will be explained and the entire process illustrated by means of a case history of loss estimation conducted for the insurance industry in Canada. Seismic hazard analysis, which is the major component of microzonation for seismic hazard and seismic risk, can be a very expensive and time consuming activity.

Therefore the objectives of the microzonation and how the results are likely to be used should be clearly understood by analyst and user before the levels of effort and sophistication of the hazard analysis are decided. The potential range in useful effort is exemplified by the following two examples. Hensolt and Brabb (1990) published a microzonation map of San Mateo County, California, showing the distribution of the site factors, S, in the Uniform Building Code.

These site factors define the amplification of ground motions by four different soil profiles compared to the motions in rock or stiff soils. Therefore the map, in effect, shows the relative seismic hazards at different locations in terms of S. In addition, if this map is overlaid on the basic hazard map for stiff ground, a revised map can be drawn that reflects in a significant way the effects of local soil conditions. Such a map is feasible in most metropolitan areas as the basic soil data is available from construction records. This represents a very basic, elementary, and affordable way of microzoning a metropolitan area for hazard, while taking into account local soil conditions.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.