Aono | Atomic Switch | E-Book | www.sack.de
E-Book

E-Book, Englisch, 270 Seiten

Reihe: Advances in Atom and Single Molecule Machines

Aono Atomic Switch

From Invention to Practical Use and Future Prospects
1. Auflage 2020
ISBN: 978-3-030-34875-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

From Invention to Practical Use and Future Prospects

E-Book, Englisch, 270 Seiten

Reihe: Advances in Atom and Single Molecule Machines

ISBN: 978-3-030-34875-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



Written by the inventors and leading experts of this new field, the book results from the International Symposium on 'Atomic Switch: Invention, Practical use and Future Prospects' which took place in Tsukuba, Japan on March 27th - 28th, 2017. The book chapters cover the different trends from the science and technology of atomic switches to their applications like brain-type information processing, artificial intelligence (AI) and completely novel functional electronic nanodevices. The current practical uses of the atomic switch are also described. As compared with the conventional semiconductor transistor switch, the atomic switch is more compact (-1/10) with much lower power consumption (-1/10) and scarcely influenced by strong electromagnetic noise and radiation including cosmic rays in space (-1/100). As such, this book is of interest to researchers, scholars and students willing to explore new materials, to refine the nanofabrication methods and to explore new and efficient device architectures.

Masakazu Aono obtained his Ph. D from University of Tokyo in 1972 and then joined the National Institute for Research in Inorganic Materials (NIRIM). In 1986, he moved to RIKEN as a Chief Scientist and organized/operated the Surface and Interface Laboratory until 2002 (in the meantime, from 1996 to 2002, he worked as a Professor at Osaka University). In 2002, he moved to the National Institute for Materials Science (NIMS) as the Director of Nanomaterials Laboratory (NML). From 2007 to 2017, he organized/operated the International Center for Materials Nanoarchitectonics (MANA) in NIMS as its Director. At present, he is an Executive Advisor of MANA and is also a Distinguished Chair Professor of the Department of Materials Science and Engineering, National Taiwan University (NTU). He is known as a pioneer of nanoscale science and technology, due to his various original achievements such as the initiation of impact-collision ion scattering spectroscopy (ICISS) for surface atomic arrangement analysis, the multiprobe STM/AFMs for nanoscale electrical conductivity measurements, reversible control of local nanochemical reactions and the invention and development of the 'Atomic Switch' among others.

Aono Atomic Switch jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;7
2;Contents;9
3;Editor and Associate Editors;11
4;Invention and Development of the Atomic Switch;12
4.1;1 Introduction;12
4.2;2 Creation of the Atomic Switch Using Ionic Conductor;15
4.2.1;2.1 Basic Operation Principle;16
4.2.2;2.2 Fabrication of the Gap-Type Atomic Switch;17
4.2.3;2.3 Quantized Conductance Using Point Contact;19
4.2.4;2.4 Logic-Gate Operation;20
4.3;3 Gapless (Junction)-Type Atomic Switch;22
4.3.1;3.1 Switch Operation Principle;23
4.3.2;3.2 Quantized Conductance;25
4.4;References;26
5;Pathway to Atomic-Switch Based Programmable Logic;27
5.1;1 Introduction;27
5.2;2 Concept of ``Switch Over Logic´´;29
5.3;3 Atomic Switch Technology;29
5.4;4 Atomic-Switch Based FPGA;32
5.5;5 Operation in Harsh Environment;37
5.6;6 FPGA Accelerator;38
5.7;7 Conclusions;40
5.8;References;41
6;Atomic Switch FPGA: Application for IoT Sensing Systems in Space;43
6.1;1 Introduction;44
6.2;2 Design Requirements for Edge Computing of IoT Applications in Space;45
6.3;3 Adaptation of Atomic Switch FPGAs to IoT Applications in Space;53
6.4;4 Adopting Atomic Switch FPGA to Embedded Automaton;56
6.4.1;4.1 Associating Layered Structure Design of a PE with Atomic Switch FPGA;56
6.4.2;4.2 Discussion of a Design Flow to Design Processor Elements Using Atomic Switches;57
6.5;5 An Example Implementation and Evaluation Result;59
6.5.1;5.1 Infrared Sensor System Implementation Using an Atomic Switch FPGA;59
6.5.2;5.2 Onboard Calibration Functions for Infrared Image Sensors;60
6.5.3;5.3 NanoBridge;60
6.5.4;5.4 Evaluation Result;62
6.6;6 Discussion;65
6.7;References;67
7;An Evaluation of Single Event Effects by Heavy Ion Irradiation on Atom Switch ROM/FPGA;69
7.1;1 Introduction;69
7.1.1;1.1 Overview of the Space Radiation Environment;69
7.1.2;1.2 Radiation Effects on Semiconductor Devices;71
7.1.3;1.3 Introduction to Atom Switches;73
7.2;2 Atom Switch;74
7.2.1;2.1 Overview;74
7.2.2;2.2 Atom Switch Memory;75
7.2.3;2.3 Atom Switch FPGA;75
7.3;3 Experimental Setup;76
7.4;4 Results and Discussions;79
7.4.1;4.1 ROM;79
7.4.2;4.2 FPGA;80
7.5;5 Conclusion;81
7.6;References;81
8;Nanoscale Electrochemical Studies: How Can We Use the Atomic Switch;83
8.1;1 Introduction;83
8.2;2 (Sub-)Nanoscale Electrochemical Studies;84
8.3;3 Using the Atomic Switch;85
8.4;4 The Atomic Switch as a Fundamental Approach for Electrochemical Studies;86
8.4.1;4.1 Theoretical Considerations;87
8.4.1.1;4.1.1 Imaging and Electrochemical Reactions;87
8.4.1.2;4.1.2 Using Time as a Kinetic Parameter;89
8.4.1.3;4.1.3 Using STM Tip to Modify the Transfer Coefficient ?;92
8.4.2;4.2 Examples for Studying Electrochemical Processes Using the Atomic Switch;93
8.4.2.1;4.2.1 Ag+ Reduction at RbAg4I5 Surface;93
8.4.2.2;4.2.2 Redox Processes on Oxides Studied by Atomic Switch;97
8.5;5 Conclusions;102
8.6;References;103
9;Atomistic Simulations for Understanding Microscopic Mechanism of Resistive Switches;104
9.1;1 Introduction;104
9.2;2 Computation Methods and Models;105
9.2.1;2.1 Methods;105
9.2.2;2.2 Structure of Amorphous Ta2O5;105
9.3;3 Switching Mechanism of Cu/a-Ta2O5/Pt Atomic Switch;107
9.3.1;3.1 Conduction Path in Cu/a-Ta2O5/Pt Atomic Switch;107
9.3.1.1;3.1.1 Single Cu Atomic Chains in a-Ta2O5;107
9.3.1.2;3.1.2 Cu Nanowires in a-Ta2O5;107
9.3.1.3;3.1.3 The Thinnest Cu Filament in a-Ta2O5;109
9.3.1.4;3.1.4 Cu Filament in a-Ta2O5 with Nanopore;110
9.3.1.5;3.1.5 Transport Properties of Cu/a-Ta2O5/Pt with and Without Cu Filament;111
9.3.2;3.2 Interface Structures of Cu/a-Ta2O5/Pt;111
9.3.2.1;3.2.1 Interface Structures and Electronic Properties of Cu/a-Ta2O5/Pt Structure;112
9.3.2.2;3.2.2 Stability of Cu/a-Ta2O5/Pt Structure;115
9.3.2.3;3.2.3 Schottky Barrier Height of Cu/a-TaOx/Pt Structure;115
9.4;4 Switching Mechanism of Pt/a-TaOx/Pt Resistive Switch;118
9.4.1;4.1 Conduction Path in Pt/a-TaOx/Pt Resistive Switch;118
9.4.1.1;4.1.1 Structures and Electronic Properties of Single O Vacancies in a-Ta2O5;119
9.4.1.2;4.1.2 Structures and Electronic Properties of a-TaO2.5 with High VO Concentration;120
9.4.1.3;4.1.3 Crystallization of Conduction Path in a-TaOx Based Resistive Switch;125
9.4.1.4;4.1.4 Transport Property of Pt/a-TaOx/Pt Resistive Switch;127
9.4.2;4.2 Diffusion of Metal and Oxygen Ions in a-TaOx Based Resistive Switch;128
9.4.2.1;4.2.1 Diffusion Coefficients and Barriers of Ta and O Ions in a-TaOx;128
9.4.2.2;4.2.2 Diffusion Mechanism of Ta and O Ions in a-TaOx;130
9.5;5 Concluding Remarks;130
9.6;References;131
10;Development of Three-Terminal Atomic Switches and Related Topics;135
10.1;1 Introduction;135
10.2;2 Metal Cation-Controlled Three-Terminal Atomic Switches;136
10.2.1;2.1 Filament Growth Controlled Type;136
10.2.2;2.2 Nucleation Controlled Type;138
10.3;3 Oxygen Ion Controlled Type;142
10.4;4 Summary;144
10.5;References;144
11;Solid-Polymer-Electrolyte-Based Atomic Switches;146
11.1;1 Introduction;146
11.2;2 Invention of SPE-Based Atomic Switch;147
11.2.1;2.1 Typical Switching Characteristics;147
11.2.2;2.2 Switching Mechanism;150
11.3;3 Kinetic Factors Determining Filament Formation;152
11.3.1;3.1 Direct Observation of Filament Growth Processes;152
11.3.2;3.2 Impacts of Device Configuration and Experimental Parameters;154
11.4;4 Highly Reproducible Conductance Quantization;156
11.4.1;4.1 I-V Characteristics in the Atomic Contact Regime;157
11.4.2;4.2 Transport Simulations for Atomic Point Contacts;157
11.5;5 Flexible Switch/Memory Applications;161
11.6;6 Summary;163
11.7;References;164
12;Nanoionic Devices for Physical Property Tuning and Enhancement;167
12.1;1 Introduction;167
12.2;2 Bandgap Tuning of Graphene Oxide Achieved by Redox Reaction;170
12.3;3 Magnetization and Magnetoresistance Tuning Achieved by Redox Reaction;173
12.4;4 Modulation of Superconducting Critical Temperature by All-Solid-State EDLT;175
12.5;5 Conclusions;177
12.6;References;178
13;Artificial Synapses Realized by Atomic Switch Technology;181
13.1;1 Introduction;182
13.2;2 Gap-Type Atomic Switch Synaptic Behavior;183
13.2.1;2.1 Ag2S-Based Switch;183
13.2.2;2.2 Cu2S-Based Atomic Switch;187
13.3;3 Synaptic Behavior of the Gapless-Type Atomic Switch;193
13.3.1;3.1 Ag/Ta2O5-Based Switch;193
13.3.2;3.2 Pt/WO3 - x-Based Switch;197
13.4;4 Summary;203
13.5;References;203
14;Atomic Switch Networks for Neuroarchitectonics: Past, Present, Future;206
14.1;1 Introduction;207
14.2;2 Frameworks for Neuromorphic and Bio-inspired Computing;208
14.2.1;2.1 Neuromorphic Computing and Artificial Neural Networks;208
14.2.2;2.2 Artificial Neural Networks;210
14.2.3;2.3 Deep Learning;212
14.2.4;2.4 Reservoir Computing;213
14.3;3 Hardware Paradigms for Neuromorphic Computing;214
14.3.1;3.1 Neuromorphic Chips;214
14.3.2;3.2 FPGAs;215
14.3.3;3.3 Graphics Processing Units (GPUs);216
14.3.4;3.4 Purpose-Built Chips and History;217
14.3.5;3.5 ASNs for Computing;218
14.4;4 Building the Atomic Switch Network;219
14.4.1;4.1 Network Fabrication;221
14.4.2;4.2 Network Functionalization;223
14.4.3;4.3 Device Fabrication;223
14.4.4;4.4 Measurement Platform;224
14.5;5 Results: Atomic Switch Network Dynamics;225
14.5.1;5.1 Operational Characteristics of the Atomic Switch;225
14.5.2;5.2 Device Activation and Switching;226
14.5.3;5.3 Coupling and Harmonic Generation;229
14.5.4;5.4 Memory and Plasticity;230
14.5.5;5.5 Fluctuations, Correlations and Power Laws;231
14.5.6;5.6 Distributed Switching/Correlations;233
14.5.7;5.7 Temporal Metastability and Criticality;233
14.5.8;5.8 Altered Critical Power-Law Dynamics;235
14.6;6 Computing with the Atomic Switch Network;236
14.6.1;6.1 Theoretical Constructs;236
14.6.2;6.2 Implementations;239
14.6.2.1;6.2.1 Waveform Regression;239
14.6.2.2;6.2.2 Logic;241
14.7;7 Outlook;244
14.8;References;245
15;A List of Papers Related to the Atomic Switch;249



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.