Arabnia / Deligiannidis / Shenavarmasouleh | Computational Science and Computational Intelligence | Buch | 978-3-031-90340-3 | sack.de

Buch, Englisch, 366 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 581 g

Reihe: Communications in Computer and Information Science

Arabnia / Deligiannidis / Shenavarmasouleh

Computational Science and Computational Intelligence

11th International Conference, CSCI 2024, Las Vegas, NV, USA, December 11-13, 2024, Proceedings, Part I
Erscheinungsjahr 2025
ISBN: 978-3-031-90340-3
Verlag: Springer Nature Switzerland

11th International Conference, CSCI 2024, Las Vegas, NV, USA, December 11-13, 2024, Proceedings, Part I

Buch, Englisch, 366 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 581 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-90340-3
Verlag: Springer Nature Switzerland


The CCIS book constitutes selected papers accepted in the Research Track on Artificial Intelligence of the 11th International Conference on Computational Science and Computational Intelligence, CSCI 2024, which took place in Las Vegas, NV, USA, during December 11–13, 2024.

The 27 full papers included in this book were carefully reviewed and selected from a total of 383 submissions. They were organized in topical sections on large language models and methodologies; deep learning and applications; artificial intelligence and prediction methods; and artificial intelligence, machine learning, applications and alrogithms. 

Arabnia / Deligiannidis / Shenavarmasouleh Computational Science and Computational Intelligence jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


SECTION: LARGE LANGUAGE MODELS & METHODOLOGIES.- Large Language Models for Text Classification: A New Era of Accuracy and Efficiency.- Exploring New Methods of Data Augmentation for Intent Classification through Large Language Models.- Towards Evaluating Large Language Models for Graph Query Generation.- Logical Fallacy Detection in Text: Leveraging Large Language Models for Improving Human Discourse.- Hallucinations and Training-data Bias: Results from two number transcription experiments using GPT models.- SECTION: DEEP LEARNING & APPLICATIONS.- On the Effectiveness of UAV Audio Detection and Identification Using Deep Learning Models and Mel Spectrograms.-DRNMS: An Enhanced Deep Learning-Based System for Data Recovery and Anomaly Detection in Network Monitoring.- Voice Disorder Prediction with Convolutional Neural Network (CNN).- Unveiling the Unexpected: Transformer Outperforms Specialized Architectures in Volatile Supply Chain Forecasting.- SECTION: ARTIFICIAL INTELLIGENCE & PREDICTION METHODS.- Optimizing Predictive Performance: A Comparative Study of Machine Learning Algorithms for Classification Tasks.-Machine Learning-Based Prediction of Rabies Outbreaks Using Epidemiological and Environmental Data in Africa.- Assisting Personal Support Worker's e-Training with AI Prediction.- Predicting Late Delivery Risk in a Blockchain-based Supply Chain Management Architecture.-  SECTION: ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, APPLICATIONS & ALGORITHMS.- Robots Playing Fair? - How Embodiment Shapes Trust and Perceptions of Cheating in AI.-Sentence-level Adversarial Examples in Arabic.- Analyzing Insurance Cost Estimation: A Supervised Regression Approach.- Collaborative Design between Intelligent Agents through Resource Sharing.- Early Detection of Mode Collapse in GANs Through Loss Monitoring.- DBRH-5: Legendre Polynomial-based Attention Mechanism in Dual-branch Hybrid-5 Towards Arrhythmia Diagnosis.- Sequential Disaggregation of Residential Energy Consumption Using Random Forest Regression.- A Declarative Approach to Tackle Sawmill Production Scheduling with Answer Set Programming.- Preferential Ensemble Method with Exponentially Weighted Scores and its Application to Facial Expression Classification.- Improving SOCIALDISTILBERT with Augmented Embeddings.- Next Generation Imminent Fracture Risk Assessment Using AI.- Multi-grain Parallel Processing of Intuctive Logic Programming.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.