Buch, Englisch, 400 Seiten, Paperback, Format (B × H): 152 mm x 229 mm, Gewicht: 589 g
Buch, Englisch, 400 Seiten, Paperback, Format (B × H): 152 mm x 229 mm, Gewicht: 589 g
Reihe: Institute of Mathematical Statistics Textbooks
ISBN: 978-1-108-74744-8
Verlag: Cambridge University Press
This compact course is written for the mathematically literate reader who wants to learn to analyze data in a principled fashion. The language of mathematics enables clear exposition that can go quite deep, quite quickly, and naturally supports an axiomatic and inductive approach to data analysis. Starting with a good grounding in probability, the reader moves to statistical inference via topics of great practical importance – simulation and sampling, as well as experimental design and data collection – that are typically displaced from introductory accounts. The core of the book then covers both standard methods and such advanced topics as multiple testing, meta-analysis, and causal inference.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Informationstheorie, Kodierungstheorie
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Automatische Datenerfassung, Datenanalyse
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Forschungsmethodik, Wissenschaftliche Ausstattung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Preface; Acknowledgments; Part I. Elements of Probability Theory: 1. Axioms of probability theory; 2. Discrete probability spaces; 3. Distributions on the real line; 4. Discrete distributions; 5. Continuous distributions; 6. Multivariate distributions; 7. Expectation and concentration; 8. Convergence of random variables; 9. Stochastic processes; Part II. Practical Considerations: 10. Sampling and simulation; 11. Data collection; Part III. Elements of Statistical Inference: 12. Models, estimators, and tests; 13. Properties of estimators and tests; 14. One proportion; 15. Multiple proportions; 16. One numerical sample; 17. Multiple numerical samples; 18. Multiple paired numerical samples; 19. Correlation analysis; 20. Multiple testing; 21. Regression analysis; 22. Foundational issues; References; Index.