Buch, Englisch, 245 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 388 g
ISBN: 978-3-540-63711-0
Verlag: Springer Berlin Heidelberg
This is a compact guide to the principles and main applications of Singularity Theory by one of the world’s top research groups. It includes a number of new results as well as a carefully prepared and extensive bibliography that makes it easy to find the necessary details. It’s ideal for any mathematician or physicist interested in modern mathematical analysis.
Zielgruppe
Research
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Integralrechnungen- und -gleichungen
- Mathematik | Informatik Mathematik Mathematische Analysis Elementare Analysis und Allgemeine Begriffe
- Mathematik | Informatik Mathematik Geometrie Algebraische Geometrie
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
Weitere Infos & Material
1. Critical Points of Functions.- 1. Invariants of Critical Points.- 2. The Classification of Critical Points.- 3. Reduction to Normal Forms.- 2. Monodromy Groups of Critical Points.- 1. The Picard-Lefschetz Theory.- 2. Dynkin Diagrams and Monodromy Groups.- 3. Complex Monodromy and Period Maps.- 4. The Mixed Hodge Structure in the Vanishing Cohomology.- 5. Simple Singularities.- 6. Topology of Complements of Discriminants of Singularities.- 3. Basic Properties of Maps.- 1. Stable Maps and Maps of Finite Multiplicity.- 2. Finite Determinacy of Map-Germs, and Their Versal Deformations.- 3. The Topological Equivalence.- 4. The Global Theory of Singularities.- 1. Thom Polynomials for Maps of Smooth Manifolds.- 2. Integer Characteristic Classes and Universal Complexes of Singularities.- 3. Multiple Points and Multisingularities.- 4. Spaces of Functions with Critical Points of Mild Complexity.- 5. Elimination of Singularities and Solution of Differential Conditions.- 6. Tangential Singularities and Vanishing Inflexions.- References.- Author Index.




