E-Book, Englisch, 359 Seiten
Arya / Bhadoria / Chaudhari Emerging Wireless Communication and Network Technologies
1. Auflage 2018
ISBN: 978-981-13-0396-8
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Principle, Paradigm and Performance
E-Book, Englisch, 359 Seiten
ISBN: 978-981-13-0396-8
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
The book covers a wide range of wireless communication and network technologies, and will help readers understand the role of wireless technologies in applications touching on various spheres of human life, e.g. healthcare, agriculture, building smart cities, forecasting and the manufacturing industry.The book begins by discussing advances in wireless communication, including emerging trends and research directions for network technologies. It also highlights the importance of and need to actively develop these technologies. In turn, the book addresses different algorithms and methodologies which could be beneficial in implementing 5G Mobile Communication, Vehicular Ad-hoc Networks (VANET), Reliable Cooperative Networks, Delay Tolerant Networks (DTN) and many more contexts related to advanced communications. It then addresses the prominence of wireless communication in connection with the Internet of Things (IoT), Mobile Opportunistic Networks and Cognitive Radio Networks (CRN). Lastly, it presents the new horizons in architecture and building protocols for Li-Fi (Light-Fidelity) and Wearable Sensor Technology.
Prof. Karm Veer Arya received his PhD from the Indian Institute of Technology in Kanpur (IITK), India and his Master's degree from the Indian Institute of Science (IISc) in Bangalore, India. His research areas include Image Processing, Biometrics, Information Security, and Wireless Ad-hoc Networks. He is currently working as a Professor at the Institute of Engineering & Technology (IET), Lucknow, and as Dean of PG Studies and Research, AKTU Lucknow, Uttar Pradesh, India. He has published more than 150 papers in international journals and conferences and supervised 6 Ph.D. scholars and more than 100 Master's students. In addition, he has completed several funded research projects.Robin Singh Bhadoria has worked in various fields, including Data Mining, Cloud Computing, Service Oriented Architectures, Wireless Sensor Networks, etc. He has published more than 60 research articles in the form of book chapters, conference and journal papers, and has released three edited books. Most recently, he completed his Ph.D. in the discipline of Computer Science & Engineering at the Indian Institute of Technology Indore (IITI), Madhya Pradesh, India. Prof Narendra S. Chaudhari has more than 35 years of academic and research experience. He was Professor of Computer Science in the Ministry of Defense (Govt. of India) M.Sc. DRDO Program from 1990 to 2001 and has been Professor of Computer Science and Engineering at the Indian Institute of Technology (IIT) Indore since 2009. He has also been a member of the Computer Engineering faculty at Nanyang Technological University (NTU), Singapore since 2002 to 2009. He has also been the Director of Visvesvaraya National Institute of Technology (VNIT), Nagpur, Maharashtra State, India since 2013. His research contributions are in the areas of algorithms and graph theory, network security and mobile computing, novel neural network models, context free grammar parsing, and optimization. He has authored more than three hundred forty research publications.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;7
3;About the Editors;9
4;Wireless Technology and Communications—Explorations & Trends;10
5;Advancement in Wireless Technologies and Networks;11
5.1;1 Introduction;11
5.1.1;1.1 Need for Advancement in Wireless Technologies;12
5.2;2 Emerging Trends and Research Direction for Wireless Technologies;13
5.2.1;2.1 Advancement in Technology Along with Existing Works;16
5.3;3 Results and Discussion;16
5.4;4 Conclusion;17
5.5;References;18
6;Cognitive Radio Network Technologies and Applications;20
6.1;1 Introduction;20
6.2;2 Network Architecture of Cognitive Radio Networks;21
6.3;3 Spectrum Sensing;22
6.3.1;3.1 Noncooperative Sensing;23
6.3.2;3.2 Cooperative Sensing;27
6.3.3;3.3 Interference-Based Sensing;28
6.3.4;3.4 Predicting Channel to Sense;28
6.4;4 Spectrum Decision;29
6.5;5 Spectrum Sharing;31
6.5.1;5.1 Spectrum Allocation in Centralized Interweave Cognitive Radio Network;32
6.6;6 Spectrum Mobility;33
6.7;7 Security Issues in Cognitive Radio Networks;35
6.8;8 Applications of Cognitive Radio Networks in LTE and Wi-Fi;36
6.8.1;8.1 LTE and Wi-Fi Coexistence;37
6.8.2;8.2 Wi-Fi and DSRC Coexistence;40
6.9;9 Conclusion;40
6.10;References;41
7;Emerging Trends in Vehicular Communication Networks;44
7.1;1 Introduction: Vehicular Communication Networks;44
7.2;2 Requirements for Next-Generation Vehicular Communication Networks;46
7.3;3 Enabling Radio Technologies for Next-Generation Vehicular Networks;48
7.3.1;3.1 Dedicated Short-Range Communications (DSRC);48
7.3.2;3.2 Long-Term Evolution (LTE) Cellular;48
7.3.3;3.3 Wi-Fi;49
7.3.4;3.4 Millimeter Wave Bands;49
7.3.5;3.5 Visible Light Bands;50
7.3.6;3.6 Satellite Communication;50
7.3.7;3.7 Low-Power Wide Area Networks (LPWANs);50
7.4;4 Next-Generation Vehicular Architecture;51
7.4.1;4.1 Medium Access Control (MAC) Protocol Design;51
7.4.2;4.2 Network and Routing Protocol Design;52
7.4.3;4.3 Transport Protocol Design;54
7.5;5 Knowledge Acquisition and Distribution in Vehicular Communication Networks;55
7.5.1;5.1 Knowledge Acquisition;56
7.5.2;5.2 How to Measure the Utility of Data;58
7.5.3;5.3 Knowledge Distribution;59
7.6;6 Emerging Protocols for Privacy Management and Secure Data Access Control in Vehicular Networks;60
7.6.1;6.1 Security Concerns in Vehicular Networks;60
7.6.2;6.2 Emerging Protection Mechanisms for Vehicular Networks;61
7.7;7 Conclusions;62
7.8;References;63
8;An Overview of 5G Technologies;65
8.1;1 Introduction;65
8.2;2 Evolution of Mobile Technologies from 1G to 5G;66
8.3;3 5G Trends, Targets, Requirements, and Challenges;67
8.3.1;3.1 5G Trends;69
8.3.2;3.2 5G Targets;70
8.3.3;3.3 5G Requirements;71
8.3.4;3.4 5G Challenges;71
8.4;4 5G Enabling Technologies;72
8.4.1;4.1 Massive MIMO;73
8.4.2;4.2 mmWave Massive MIMO;74
8.4.3;4.3 Cloud Radio Access Networks;75
8.4.4;4.4 D2D Communications;75
8.4.5;4.5 Ultradense Heterogeneous Networks;77
8.5;5 Conclusions;82
8.6;References;83
9;Design and Application for Reliable Cooperative Networks;87
9.1;1 Relaying Protocol for Collaborative Transmission in Cooperative Networks;88
9.1.1;1.1 The Fundamental of Relay Protocols;88
9.1.2;1.2 Calculation of End-to-End Signal-to-Noise Ratio (SNR) for Relaying Networks and System Performance Evaluation;91
9.1.3;1.3 Considerations on DF Scheme in Relaying Networks;91
9.2;2 Simultaneous Wireless Information and Power Transfer-Aware Relay;92
9.2.1;2.1 Policies for Wireless Power Transfer;92
9.2.2;2.2 Energy Harvesting in Relaying Network;93
9.2.3;2.3 Investigation on Energy Harvesting System Performance;96
9.3;3 Full-Duplex Cooperative Networks;96
9.3.1;3.1 An Architecture of Full-Duplex Energy Harvesting Network;97
9.3.2;3.2 Full-Duplex System Analysis;98
9.3.3;3.3 System Performance Analysis;100
9.4;4 Secure Communication Between Source and Destination via Untrusted Node;100
9.4.1;4.1 Secure Relaying Communication Model;101
9.4.2;4.2 Maximum Energy Harvesting (MEH) Protocol;101
9.5;5 MIMO Relaying Model and Challenges in Relaying Design;103
9.5.1;5.1 Wireless Powered Communication with Multi-antenna System;103
9.5.2;5.2 Challenges in Design of Cooperative Networks;105
9.6;6 Conclusion;105
9.7;References;106
10;Semantics for Delay-Tolerant Network (DTN);107
10.1;1 Introduction;107
10.1.1;1.1 Significance of DTN;108
10.1.2;1.2 Features of DTN;109
10.1.3;1.3 Applications of DTN;109
10.2;2 DTN Architecture;111
10.2.1;2.1 System Architecture;111
10.2.2;2.2 Layer Architecture;113
10.3;3 Transmission in Delay-Tolerant Network;114
10.3.1;3.1 Contacts;114
10.3.2;3.2 Bundle Protocol;115
10.3.3;3.3 Custody Transfer;117
10.3.4;3.4 Flow and Congestion Control;117
10.3.5;3.5 Message Switching;118
10.4;4 Routing in Delay-Tolerant Network;119
10.4.1;4.1 Unicast Routing;119
10.4.2;4.2 Multicast Routing;119
10.4.3;4.3 Anycast Routing;122
10.4.4;4.4 Buffer Management;123
10.4.5;4.5 Performance Metrics;123
10.5;5 Security in Delay-Tolerant Network;124
10.5.1;5.1 Security Issues;125
10.5.2;5.2 Fragments Authentication;125
10.6;6 Delay-Tolerant Network and Vehicular Adhoc Netwwork;125
10.6.1;6.1 Overview of VANET Delay-Tolerant Networks;125
10.6.2;6.2 Characteristics of VDTN;126
10.6.3;6.3 DTN Protocols for VANET Delay-Tolerant Networks;127
10.7;7 Conclusions and Future Scope;128
10.8;References;128
11;Wireless Technology and Communications—Methodologies & Implementations;130
12;Architectural Building Protocols for Li-Fi (Light Fidelity);131
12.1;1 Introduction;131
12.1.1;1.1 Visible Light Communication;132
12.1.2;1.2 Importance of VLC;132
12.1.3;1.3 Modes of Communication in VLC;133
12.2;2 Light Fidelity;133
12.2.1;2.1 Need of Li-Fi;133
12.2.2;2.2 Challenges for Li-Fi;134
12.2.3;2.3 Comparison of Li-Fi and Wi-Fi;135
12.2.4;2.4 Architecture of Li-Fi;136
12.2.5;2.5 Difference Between Photodiode and Image Sensor;137
12.2.6;2.6 Working of Li-Fi;137
12.3;3 Li-Fi Standardization and Its Integrated Communication Protocols Solution;138
12.3.1;3.1 OOK Modulation with Dimming;139
12.3.2;3.2 VPPM Modulation with Dimming;139
12.3.3;3.3 CSK Modulation with Dimming;140
12.3.4;3.4 Hybrid Li-Fi: Integrating Li-Fi with Wi-Fi;140
12.4;4 Conclusion and Future Scope;140
12.5;References;141
13;Infrastructure in Mobile Opportunistic Networks;142
13.1;1 Concept, Protocol and Architecture for Mobile Opportunistic Networks;142
13.1.1;1.1 Routing Protocols;143
13.2;2 Cooperative Framework for Building Opportunistic Networks;145
13.3;3 Recent Advances in Routing Methodologies;148
13.3.1;3.1 Challenges in Opportunistic Routing;149
13.4;4 Mobile Peer-to-Peer Content Dissemination Model in Load Balancing;151
13.5;5 Privacy and Forwarding Models in Mobile Opportunistic Networks;153
13.6;6 Concept for Pocket Switched Networks, Amorphous and Semantic Opportunistic Networks;154
13.6.1;6.1 Amorphous Opportunistic Networks;154
13.7;7 Future Research Trends in Mobile Opportunistic Networks;155
13.8;8 Conclusion;156
13.9;References;156
14;Generic Design and Advances in Wearable Sensor Technology;158
14.1;1 Introduction of Wearable Sensor-Based Systems—Design and Architecture;159
14.2;2 Challenges and Issue in Wearable Computing and Sensor Implications;160
14.3;3 Wireless Communication Standards Used in Wearable Technology;161
14.3.1;3.1 Short-Range Wireless Communication Standards for Wearable Sensors;161
14.3.2;3.2 Long-Range Wireless Communication Standards for Wearable Sensors;163
14.4;4 Design Antenna for Wearable Devices System;164
14.5;5 Inferences of Body Area Network System Architectures;164
14.5.1;5.1 Sensors Tire;164
14.5.2;5.2 Mobile Tire;165
14.5.3;5.3 Remote Server Tire;165
14.6;6 Wearable Sensor Based on Advanced Materials;166
14.6.1;6.1 Wearable Temperature Sensors;166
14.6.2;6.2 Wearable Strain Sensors;167
14.6.3;6.3 Wearable Devices for Sensing Change Through the Skin;167
14.6.4;6.4 Nanomaterials-Based Wearable Sensors;168
14.7;7 Power Harvesting for Wearable Devices System;168
14.7.1;7.1 Self-power Devices;168
14.7.2;7.2 Energy Harvesting from Heat of the Human Body;169
14.7.3;7.3 Rechargeable Micro-battery and Super-Capacitors for Energy Harvesting;169
14.7.4;7.4 Energy Harvesting from Electromagnetic Radio Frequency Spectrum;169
14.8;8 Use Case for Optics for Smart Glasses, Augmented Reality, and Virtual Reality Headsets;170
14.8.1;8.1 Augmented Reality Smart Glasses;170
14.8.2;8.2 Using Smart Glass in Surgical Education;170
14.8.3;8.3 Wearable Contact Lenses;171
14.9;9 Use Case in Health Monitoring and Prognosis;171
14.10;10 Conclusion;172
14.11;References;172
15;Realizing the Wireless Technology in Internet of Things (IoT);175
15.1;1 Introduction of IoT with Emerging Wireless Technologies;176
15.1.1;1.1 Types of Communication Within the IoT and Challenges;176
15.1.2;1.2 Potential Applications;177
15.1.3;1.3 Privacy Hazards;178
15.2;2 Basic Elements for Forming IoT and Addressing the Issues Associated with It;178
15.2.1;2.1 Components of IoT;178
15.2.2;2.2 Application Protocols;179
15.2.3;2.3 Frequency Bands and Regulations;180
15.3;3 General Architecture and Factors Affecting IoT Centric Features;181
15.3.1;3.1 General Architecture and Reference Ones;181
15.3.2;3.2 IoT Key Performance Indicators;183
15.3.3;3.3 Security Threats and Countermeasures;184
15.4;4 Middleware Technology for Grooming IoT Essence;186
15.4.1;4.1 Middleware for Internet of Things: Challenges;186
15.4.2;4.2 Classification of IoT Middleware;186
15.4.3;4.3 Popular IoT Middleware;187
15.5;5 The Device-to-Device (D2D) Communications Protocol Stack;188
15.5.1;5.1 Device-to-Device (D2D) Communication Technologies;188
15.5.2;5.2 Characteristics of D2D Communication Within IoT;190
15.5.3;5.3 Existing Routing Algorithms and Protocols;191
15.6;6 Conclusions;192
15.7;References;192
16;Fast and Flexible Initial Uplink Synchronization for Long-Term Evolution;195
16.1;1 Background;195
16.1.1;1.1 Initial Uplink Synchronization (IUS);195
16.1.2;1.2 Related Works;196
16.1.3;1.3 Emerging Challenges and Our Contributions;197
16.2;2 IUS Signal Representation;198
16.3;3 A Sparse Recovery Method;200
16.3.1;3.1 ell1 Optimization Strategy;201
16.3.2;3.2 Smoothed ell0 Norm Minimization isl0;202
16.4;4 Codebook Design;204
16.4.1;4.1 The Mutual Coherence;205
16.5;5 Zadoff–Chu Sequence Selection;205
16.5.1;5.1 Small CFO;205
16.5.2;5.2 Mitigating the Adverse Effects of CFO;207
16.6;6 Simulation Results;207
16.6.1;6.1 Performance Evaluation at Low CFO;208
16.6.2;6.2 Performance Evaluation at Larger CFO;210
16.7;7 Need of Advancement of IUS Algorithms for Future Wireless Communication;211
16.8;8 Conclusion;211
16.9;References;212
17;Wireless Technology and Communications—Advancement & Future Scope;214
18;Toward a “Green” Generation of Wireless Communications Systems;215
18.1;1 Introduction;215
18.2;2 RF Front-End Imperfection Models;217
18.2.1;2.1 Power Amplifier Nonlinear Distortion;217
18.2.2;2.2 Phase Noise;218
18.2.3;2.3 Analog-to-Digital Converter Quantization Noise;218
18.2.4;2.4 IQ Imbalances;219
18.2.5;2.5 Quantification of the RF Front-End Quality;220
18.3;3 Spectral Efficiency Using Full-Duplex;221
18.3.1;3.1 Self-interference Reduction Techniques: Antenna, RF, and Digital Cancelation with “Real-Life” Components;222
18.3.2;3.2 RF Imperfections on Full-Duplex Relays;225
18.3.3;3.3 Self-interference Channel Models;230
18.4;4 Massive MIMO Systems;232
18.4.1;4.1 Low Complexity RF Front-End Design;233
18.4.2;4.2 Power Efficiency and Linear Precoding Techniques;234
18.4.3;4.3 Numerical Evaluation;236
18.5;5 Summary of the Chapter;237
18.6;References;238
19;Security Attacks on Wireless Networks and Their Detection Techniques;241
19.1;1 Introduction;241
19.1.1;1.1 Introduction to Wireless Networking;242
19.1.2;1.2 Wireless Access Points;242
19.1.3;1.3 Advantages of Using Wireless Network;242
19.1.4;1.4 Communiqué Using Wireless Networks;244
19.1.5;1.5 Data Frames in Wireless Networking;245
19.2;2 Vulnerabilities in Wireless Network;246
19.2.1;2.1 Vulnerability Definition;246
19.2.2;2.2 Insecure Physical Location;247
19.2.3;2.3 Rogue Access Points;247
19.2.4;2.4 Physical Access Is Not Required;248
19.2.5;2.5 Inadequate Encryption and Decryption Standards;248
19.2.6;2.6 Unidentified Network Boundary;248
19.2.7;2.7 Insecure Wireless Network;249
19.3;3 Attacks in Wireless Network;249
19.3.1;3.1 Attack Definition;250
19.3.2;3.2 Attacks Classification in Wireless Networks;250
19.3.3;3.3 Denial-of-Service Attacks;252
19.3.4;3.4 Man-in-the-Middle Attacks;255
19.3.5;3.5 Wireless Cipher Attacks;257
19.3.6;3.6 Cryptocurrency Attacks;260
19.3.7;3.7 Accounts-Linked Attacks (Semantic Attacks);261
19.3.8;3.8 Security Breaches;263
19.4;4 Wireless Defense Mechanism;263
19.4.1;4.1 Wireless Security Goals;264
19.4.2;4.2 Attack Detection Techniques;265
19.5;5 Conclusion;268
19.6;References;268
20;Spectrum Decision Mechanisms in Cognitive Radio Networks;271
20.1;1 Introduction;271
20.2;2 Spectrum Decision Overview;272
20.2.1;2.1 Spectrum Characterization;273
20.2.2;2.2 Spectrum Selection;274
20.2.3;2.3 CR Device Reconfiguration;275
20.2.4;2.4 Reinforcement Steps for Spectrum Decision;275
20.3;3 An Overview of Spectrum Decision Frameworks;276
20.3.1;3.1 Definition of Spectrum Decision Frameworks;276
20.3.2;3.2 Framework 1: A Spectrum Decision Framework for Cognitive Radio Networks;276
20.3.3;3.3 Framework 2: A QoS-Aware Framework for Available Spectrum Characterization and Decision in Cognitive Radio Networks;279
20.3.4;3.4 Framework 3: A Belief-Based Decision-Making Framework for Spectrum Selection in Cognitive Radio Networks;280
20.3.5;3.5 Framework 4: Reducing Spectrum Handoffs and Energy Switching Consumption of MADM-Based Decision in Cognitive Radio Networks;281
20.4;4 Discussion;291
20.4.1;4.1 Open Issues;291
20.4.2;4.2 Discussion of New Technologies in CRN;292
20.5;5 Conclusions;293
20.6;References;293
21;Vehicular Networks to Intelligent Transportation Systems;297
21.1;1 Introduction;297
21.2;2 Intelligent Transportation Systems;299
21.2.1;2.1 Architecture;299
21.2.2;2.2 Vehicular Ad Hoc Networks;300
21.2.3;2.3 Integration with Other Networks;302
21.3;3 Infrastructure and Services;303
21.3.1;3.1 ITS Infrastructure;303
21.3.2;3.2 Traffic Prediction;305
21.3.3;3.3 Mobility and Traffic;305
21.4;4 Data and Security in ITS;308
21.4.1;4.1 Data Collection and Quality;308
21.4.2;4.2 Security;310
21.5;5 Conclusion;313
21.6;References;313
22;State Estimation and Anomaly Detection in Wireless Sensor Networks;316
22.1;1 Introduction;316
22.2;2 Statistical Models for State Estimation;319
22.2.1;2.1 Linear Mixed Model;321
22.2.2;2.2 Modelling the General Effect of Time;322
22.2.3;2.3 Modelling the Random Effects of Time;322
22.2.4;2.4 Joint Likelihood Function and Parameter Estimation;323
22.2.5;2.5 Detection of Anomalous Node;323
22.3;3 Numerical Studies;325
22.3.1;3.1 Simulation 1;325
22.3.2;3.2 Simulation 2;327
22.4;4 Conclusions and Future Work;330
22.5;References;331
23;Experimental Wireless Network Deployment of Software-Defined and Virtualized Networking in 5G Environments;334
23.1;1 Introduction;334
23.2;2 Mobility Management in 5G Networks;336
23.2.1;2.1 Software-Defined Networking and Network Function Virtualization as Key Enablers;337
23.2.2;2.2 The Role of Network Slicing;338
23.3;3 Points of Attachment Virtualization;339
23.3.1;3.1 Overview of Existing Works;340
23.3.2;3.2 Virtualization Approaches and Their Signalling;340
23.3.3;3.3 Virtual Wi-Fi Access Point Evaluation;343
23.4;4 Bringing User Context to the Cloud;344
23.4.1;4.1 Virtualizing the User Equipment;345
23.4.2;4.2 Mobile Node Virtualization Procedures;346
23.4.3;4.3 Proof-of-Concept Prototype Evaluation;350
23.5;5 The Impact of Virtualization in 5G Scenarios;352
23.5.1;5.1 Mobile Operator;353
23.5.2;5.2 Mobile-Edge Computing;353
23.5.3;5.3 Smart-Cities;354
23.6;6 Use Case Scenario in Wireless Testbed;355
23.6.1;6.1 Deployment and Signalling;355
23.6.2;6.2 Scenario Evaluation;356
23.7;7 Conclusions and Future Work;356
23.8;References;357




