Buch, Englisch, 346 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1510 g
ISBN: 978-0-8176-3399-8
Verlag: Birkhäuser Boston
This book is devoted to the basic variational principles of mechanics, namely the Lagrange-D’Alembert differential variational principle and the Hamilton integral variational principle. These two variational principles form the basis of contemporary analytical mechanics, and from them the body of classical dynamics can be deductively derived as a part of physical theory.
"An Introduction to Modern Variational Techniques in Mechanics and Engineering" will serve a broad audience of students, researchers, and professionals in analytical mechanics, applied variational calculus, optimal control, physics, and mechanical and aerospace engineering. The book may be used in graduate and senior undergraduate dynamics courses in engineering, applied mathematics, and physics departments, or it may also serve as a self-study reference text.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Maschinenbau
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Technische Wissenschaften Technik Allgemein Physik, Chemie für Ingenieure
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Naturwissenschaften Physik Mechanik Klassische Mechanik, Newtonsche Mechanik
Weitere Infos & Material
I Differential Variational Principles of Mechanics.- 1 The Elements of Analytical Mechanics Expressed Using the Lagrange-D’Alembert Differential Variational Principle.- 2 The Hamilton-Jacobi Method of Integration of Canonical Equations.- 3 Transformation Properties of Lagrange-D’Alembert Variational Principle: Conservation Laws of Nonconservative Dynamical Systems.- 4 A Field Method Suitable for Application in Conservative and Nonconservative Mechanics.- II The Hamiltonian Integral Variational Principle.- 5 The Hamiltonian Variational Principle and Its Applications.- 6 Variable End Points, Natural Boundary Conditions, Bolza Problems.- 7 Constrained Problems.- 8 Variational Principles for Elastic Rods and Columns.